985 resultados para Rapid prototyping,


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Generative Verfahren sind seit etwa 1987 in den USA und seit etwa 1990 in Europa und Deutschland in Form von Rapid Prototyping Verfahren bekannt und haben sich in dieser Zeit von eher als exotisch anzusehenden Modellbauverfahren zu effizienten Werkzeugen für die Beschleunigung der Produktentstehung gewandelt. Mit der Weiterentwicklung der Verfahren und insbesondere der Materialien wird mehr und mehr das Feld der direkten Anwendung der Rapid Technologie zur Fertigung erschlossen. Rapid Technologien werden daher zum Schlüssel für neue Konstruktionssystematiken und Fertigungsstrategien. Die Anwendertagung Rapid.Tech befasst sich mit den neuen Verfahren zur direkten Produktion und den daraus erwachsenden Chancen für Entwickler und Produzenten. Die Kenntnis der Rapid Prototyping Verfahren wird bei den meisten Fachvorträgen auf der Rapid.Tech vorausgesetzt. Für diejenigen, die sich bisher mit generativen Verfahren noch nicht beschäftigt haben, oder die ihre Grundkenntnisse schnell auffrischen wollen, haben wir die folgenden Zusammenfassung der Grundlagen der generativen Fertigungstechnik, der heutigen Rapid Prototyping Verfahren, zusammengestellt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Das Fraunhofer IPA hat mit ein Verfahren entwickelt, durch welches lasergesinterte Rapid Prototyping Bauteile gut reinigbar beschichtet werden können. Ziel ist die Nutzung von Rapid-Prototyping Bauteilen in der Lebensmittel verarbeitenden Industrie. Dazu werden die rauen Oberflächen der Bauteile eingeebnet und mit einer gut reinigbaren Schicht umgeben. In Temperaturwechseltests und Reinigungstest durch unabhängige Institute konnte eine gute Reinigbarkeit der so beschichteten Rapid Prototyping Bauteile nachgewiesen werden. Die so beschichteten Rapid Prototyping Bauteile entsprechen nach einer Prüfung durch das Forschungsinstitut Weihenstephan den Hygienic Design Anforderungen gemäß den Vorgaben der EHEDG.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most used methods in rapidprototyping is Fused Deposition Modeling (FDM), which provides components with a reasonable strength in plastic materials such as ABS and has a low environmental impact. However, the FDM process exhibits low levels of surface finishing, difficulty in getting complex and/or small geometries and low consistency in “slim” elements of the parts. Furthermore, “cantilever” elements need large material structures to be supported. The solution of these deficiencies requires a comprehensive review of the three-dimensional part design to enhance advantages and performances of FDM and reduce their constraints. As a key feature of this redesign a novel method of construction by assembling parts with structuraladhesive joints is proposed. These adhesive joints should be designed specifically to fit the plastic substrate and the FDM manufacturing technology. To achieve this, the most suitable structuraladhesiveselection is firstly required. Therefore, the present work analyzes five different families of adhesives (cyanoacrylate, polyurethane, epoxy, acrylic and silicone), and, by means of the application of technical multi-criteria decision analysis based on the analytic hierarchy process (AHP), to select the structuraladhesive that better conjugates mechanical benefits and adaptation to the FDM manufacturing process

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new set of manufacturing technologies has emerged in the past decades to address market requirements in a customized way and to provide support for research tasks that require prototypes. These new techniques and technologies are usually referred to as rapid prototyping and manufacturing technologies, and they allow prototypes to be produced in a wide range of materials with remarkable precision in a couple of hours. Although they have been rapidly incorporated into product development methodologies, they are still under development, and their applications in bioengineering are continuously evolving. Rapid prototyping and manufacturing technologies can be of assistance in every stage of the development process of novel biodevices, to address various problems that can arise in the devices' interactions with biological systems and the fact that the design decisions must be tested carefully. This review focuses on the main fields of application for rapid prototyping in biomedical engineering and health sciences, as well as on the most remarkable challenges and research trends.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapid prototyping environments can speed up the research of visual control algorithms. We have designed and implemented a software framework for fast prototyping of visual control algorithms for Micro Aerial Vehicles (MAV). We have applied a combination of a proxy-based network communication architecture and a custom Application Programming Interface. This allows multiple experimental configurations, like drone swarms or distributed processing of a drone’s video stream. Currently, the framework supports a low-cost MAV: the Parrot AR.Drone. Real tests have been performed on this platform and the results show comparatively low figures of the extra communication delay introduced by the framework, while adding new functionalities and flexibility to the selected drone. This implementation is open-source and can be downloaded from www.vision4uav.com/?q=VC4MAV-FW

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The possibility of manufacturing textured materials and devices, with surface properties controlled from the design stage, instead of being the result of machining processes or chemical attacks, is a key factor for the incorporation of advanced functionalities to a wide set of micro and nanosystems. Recently developed high-precision additive manufacturing technologies, together with the use of fractal models linked to computer-aided design tools, allow for a precise definition and control of final surface properties for a wide set of applications, although the production of larger series based on these resources is still an unsolved challenge. However, rapid prototypes, with controlled surface topography, can be used as original masters for obtaining micromold inserts for final large-scale series manufacture of replicas using microinjection molding. In this study, an original procedure is presented, aimed at connecting rapid prototyping with microinjection molding, for the mass production of two different microtextured microsystems, linked to tissue engineering tasks, using different thermoplastics as ultimate materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The possibility of designing and manufacturing biomedical microdevices with multiple length-scale geometries can help to promote special interactions both with their environment and with surrounding biological systems. These interactions aim to enhance biocompatibility and overall performance by using biomimetic approaches. In this paper, we present a design and manufacturing procedure for obtaining multi-scale biomedical microsystems based on the combination of two additive manufacturing processes: a conventional laser writer to manufacture the overall device structure, and a direct-laser writer based on two-photon polymerization to yield finer details. The process excels for its versatility, accuracy and manufacturing speed and allows for the manufacture of microsystems and implants with overall sizes up to several millimeters and with details down to sub-micrometric structures. As an application example we have focused on manufacturing a biomedical microsystem to analyze the impact of microtextured surfaces on cell motility. This process yielded a relevant increase in precision and manufacturing speed when compared with more conventional rapid prototyping procedures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Customizing shoe manufacturing is one of the great challenges in the footwear industry. It is a production model change where design adopts not only the main role, but also the main bottleneck. It is therefore necessary to accelerate this process by improving the accuracy of current methods. Rapid prototyping techniques are based on the reuse of manufactured footwear lasts so that they can be modified with CAD systems leading rapidly to new shoe models. In this work, we present a shoe last fast reconstruction method that fits current design and manufacturing processes. The method is based on the scanning of shoe last obtaining sections and establishing a fixed number of landmarks onto those sections to reconstruct the shoe last 3D surface. Automated landmark extraction is accomplished through the use of the self-organizing network, the growing neural gas (GNG), which is able to topographically map the low dimensionality of the network to the high dimensionality of the contour manifold without requiring a priori knowledge of the input space structure. Moreover, our GNG landmark method is tolerant to noise and eliminates outliers. Our method accelerates up to 12 times the surface reconstruction and filtering processes used by the current shoe last design software. The proposed method offers higher accuracy compared with methods with similar efficiency as voxel grid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selective laser sintering has been used to fabricate an aluminium alloy powder preform which is subsequently debound and infiltrated with a second aluminium alloy. This represents a new rapid manufacturing system for aluminium that can be used to fabricate large, intricate parts. The base powder is an alloy such as AA6061. The infiltrant is a binary or higher-order eutectic based on either Al-Cu or At-Si. To ensure that infiltration occurs without loss of dimensional precision, it is important that a rigid skeleton forms prior to infiltration. This can be achieved by the partial transformation of the aluminium to aluminium nitride. In order for this to occur throughout the component, magnesium powder must be added to the alumina support powder which surrounds the part in the furnace. The magnesium scavenges the oxygen and thereby creates a microclimate in which aluminium nitride can form. The replacement of the ionocovalent Al2O3 with the covalent AlN on the surface of the aluminium powders also facilitates wetting and thus spontaneous and complete infiltration. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of tin as an alloying element in the production of freeformed infiltrated aluminium components is explored. Tin slows the growth of the aluminium nitride skeleton which provides dimensional stability, as well as increasing the rate of infiltration of the aluminium liquid into the aluminium nitride skeleton. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.