919 resultados para Rank regression
Resumo:
Numerous expert elicitation methods have been suggested for generalised linear models (GLMs). This paper compares three relatively new approaches to eliciting expert knowledge in a form suitable for Bayesian logistic regression. These methods were trialled on two experts in order to model the habitat suitability of the threatened Australian brush-tailed rock-wallaby (Petrogale penicillata). The first elicitation approach is a geographically assisted indirect predictive method with a geographic information system (GIS) interface. The second approach is a predictive indirect method which uses an interactive graphical tool. The third method uses a questionnaire to elicit expert knowledge directly about the impact of a habitat variable on the response. Two variables (slope and aspect) are used to examine prior and posterior distributions of the three methods. The results indicate that there are some similarities and dissimilarities between the expert informed priors of the two experts formulated from the different approaches. The choice of elicitation method depends on the statistical knowledge of the expert, their mapping skills, time constraints, accessibility to experts and funding available. This trial reveals that expert knowledge can be important when modelling rare event data, such as threatened species, because experts can provide additional information that may not be represented in the dataset. However care must be taken with the way in which this information is elicited and formulated.
Resumo:
Police work tasks are diverse and require the ability to take command, demonstrate leadership, make serious decisions and be self directed (Beck, 1999; Brunetto & Farr-Wharton, 2002; Howard, Donofrio & Boles, 2002). This work is usually performed in pairs or sometimes by an officer working alone. Operational police work is seldom performed under the watchful eyes of a supervisor and a great amount of reliance is placed on the high levels of motivation and professionalism of individual officers. Research has shown that highly motivated workers produce better outcomes (Whisenand & Rush, 1998; Herzberg, 2003). It is therefore important that Queensland police officers are highly motivated to provide a quality service to the Queensland community. This research aims to identify factors which motivate Queensland police to perform quality work. Researchers acknowledge that there is a lack of research and knowledge in regard to the factors which motivate police (Beck, 1999; Bragg, 1998; Howard, Donofrio & Boles, 2002; McHugh & Verner, 1998). The motivational factors were identified in regard to the demographic variables of; age, sex, rank, tenure and education. The model for this research is Herzberg’s two-factor theory of workplace motivation (1959). Herzberg found that there are two broad types of workplace motivational factors; those driven by a need to prevent loss or harm and those driven by a need to gain personal satisfaction or achievement. His study identified 16 basic sub-factors that operate in the workplace. The research utilised a questionnaire instrument based on the sub-factors identified by Herzberg (1959). The questionnaire format consists of an initial section which sought demographic information about the participant and is followed by 51 Likert scale questions. The instrument is an expanded version of an instrument previously used in doctoral studies to identify sources of police motivation (Holden, 1980; Chiou, 2004). The questionnaire was forwarded to approximately 960 police in the Brisbane, Metropolitan North Region. The data were analysed using Factor Analysis, MANOVAs, ANOVAs and multiple regression analysis to identify the key sources of police motivation and to determine the relationships between demographic variables such as: age, rank, educational level, tenure, generation cohort and motivational factors. A total of 484 officers responded to the questionnaire from the sample population of 960. Factor analysis revealed five broad Prime Motivational Factors that motivate police in their work. The Prime Motivational Factors are: Feeling Valued, Achievement, Workplace Relationships, the Work Itself and Pay and Conditions. The factor Feeling Valued highlighted the importance of positive supportive leaders in motivating officers. Many officers commented that supervisors who only provided negative feedback diminished their sense of feeling valued and were a key source of de-motivation. Officers also frequently commented that they were motivated by operational police work itself whilst demonstrating a strong sense of identity with their team and colleagues. The study showed a general need for acceptance by peers and an idealistic motivation to assist members of the community in need and protect victims of crime. Generational cohorts were not found to exert a significant influence on police motivation. The demographic variable with the single greatest influence on police motivation was tenure. Motivation levels were found to drop dramatically during the first two years of an officer’s service and generally not improve significantly until near retirement age. The findings of this research provide the foundation of a number of recommendations in regard to police retirement, training and work allocation that are aimed to improve police motivation levels. The five Prime Motivational Factor model developed in this study is recommended for use as a planning tool by police leaders to improve motivational and job-satisfaction components of police Service policies. The findings of this study also provide a better understanding of the current sources of police motivation. They are expected to have valuable application for Queensland police human resource management when considering policies and procedures in the areas of motivation, stress reduction and attracting suitable staff to specific areas of responsibility.
Resumo:
Purpose: Progression to the castration-resistant state is the incurable and lethal end stage of prostate cancer, and there is strong evidence that androgen receptor (AR) still plays a central role in this process. We hypothesize that knocking down AR will have a major effect on inhibiting growth of castration-resistant tumors. Experimental Design: Castration-resistant C4-2 human prostate cancer cells stably expressing a tetracycline-inducible AR-targeted short hairpin RNA (shRNA) were generated to directly test the effects of AR knockdown in C4-2 human prostate cancer cells and tumors. Results:In vitro expression of AR shRNA resulted in decreased levels of AR mRNA and protein, decreased expression of prostate-specific antigen (PSA), reduced activation of the PSA-luciferase reporter, and growth inhibition of C4-2 cells. Gene microarray analyses revealed that AR knockdown under hormone-deprived conditions resulted in activation of genes involved in apoptosis, cell cycle regulation, protein synthesis, and tumorigenesis. To ensure that tumors were truly castration-resistant in vivo, inducible AR shRNA expressing C4-2 tumors were grown in castrated mice to an average volume of 450 mm3. In all of the animals, serum PSA decreased, and in 50% of them, there was complete tumor regression and disappearance of serum PSA. Conclusions: Whereas castration is ineffective in castration-resistant prostate tumors, knockdown of AR can decrease serum PSA, inhibit tumor growth, and frequently cause tumor regression. This study is the first direct evidence that knockdown of AR is a viable therapeutic strategy for treatment of prostate tumors that have already progressed to the castration-resistant state.
Resumo:
Focuses on a study which introduced an iterative modeling method that combines properties of ordinary least squares (OLS) with hierarchical tree-based regression (HTBR) in transportation engineering. Information on OLS and HTBR; Comparison and contrasts of OLS and HTBR; Conclusions.
Resumo:
There has been considerable research conducted over the last 20 years focused on predicting motor vehicle crashes on transportation facilities. The range of statistical models commonly applied includes binomial, Poisson, Poisson-gamma (or negative binomial), zero-inflated Poisson and negative binomial models (ZIP and ZINB), and multinomial probability models. Given the range of possible modeling approaches and the host of assumptions with each modeling approach, making an intelligent choice for modeling motor vehicle crash data is difficult. There is little discussion in the literature comparing different statistical modeling approaches, identifying which statistical models are most appropriate for modeling crash data, and providing a strong justification from basic crash principles. In the recent literature, it has been suggested that the motor vehicle crash process can successfully be modeled by assuming a dual-state data-generating process, which implies that entities (e.g., intersections, road segments, pedestrian crossings, etc.) exist in one of two states—perfectly safe and unsafe. As a result, the ZIP and ZINB are two models that have been applied to account for the preponderance of “excess” zeros frequently observed in crash count data. The objective of this study is to provide defensible guidance on how to appropriate model crash data. We first examine the motor vehicle crash process using theoretical principles and a basic understanding of the crash process. It is shown that the fundamental crash process follows a Bernoulli trial with unequal probability of independent events, also known as Poisson trials. We examine the evolution of statistical models as they apply to the motor vehicle crash process, and indicate how well they statistically approximate the crash process. We also present the theory behind dual-state process count models, and note why they have become popular for modeling crash data. A simulation experiment is then conducted to demonstrate how crash data give rise to “excess” zeros frequently observed in crash data. It is shown that the Poisson and other mixed probabilistic structures are approximations assumed for modeling the motor vehicle crash process. Furthermore, it is demonstrated that under certain (fairly common) circumstances excess zeros are observed—and that these circumstances arise from low exposure and/or inappropriate selection of time/space scales and not an underlying dual state process. In conclusion, carefully selecting the time/space scales for analysis, including an improved set of explanatory variables and/or unobserved heterogeneity effects in count regression models, or applying small-area statistical methods (observations with low exposure) represent the most defensible modeling approaches for datasets with a preponderance of zeros
Resumo:
This paper presents an approach to predict the operating conditions of machine based on classification and regression trees (CART) and adaptive neuro-fuzzy inference system (ANFIS) in association with direct prediction strategy for multi-step ahead prediction of time series techniques. In this study, the number of available observations and the number of predicted steps are initially determined by using false nearest neighbor method and auto mutual information technique, respectively. These values are subsequently utilized as inputs for prediction models to forecast the future values of the machines’ operating conditions. The performance of the proposed approach is then evaluated by using real trending data of low methane compressor. A comparative study of the predicted results obtained from CART and ANFIS models is also carried out to appraise the prediction capability of these models. The results show that the ANFIS prediction model can track the change in machine conditions and has the potential for using as a tool to machine fault prognosis.
Resumo:
There have been notable advances in learning to control complex robotic systems using methods such as Locally Weighted Regression (LWR). In this paper we explore some potential limits of LWR for robotic applications, particularly investigating its application to systems with a long horizon of temporal dependence. We define the horizon of temporal dependence as the delay from a control input to a desired change in output. LWR alone cannot be used in a temporally dependent system to find meaningful control values from only the current state variables and output, as the relationship between the input and the current state is under-constrained. By introducing a receding horizon of the future output states of the system, we show that sufficient constraint is applied to learn good solutions through LWR. The new method, Receding Horizon Locally Weighted Regression (RH-LWR), is demonstrated through one-shot learning on a real Series Elastic Actuator controlling a pendulum.
Resumo:
We consider the problem of how to construct robust designs for Poisson regression models. An analytical expression is derived for robust designs for first-order Poisson regression models where uncertainty exists in the prior parameter estimates. Given certain constraints in the methodology, it may be necessary to extend the robust designs for implementation in practical experiments. With these extensions, our methodology constructs designs which perform similarly, in terms of estimation, to current techniques, and offers the solution in a more timely manner. We further apply this analytic result to cases where uncertainty exists in the linear predictor. The application of this methodology to practical design problems such as screening experiments is explored. Given the minimal prior knowledge that is usually available when conducting such experiments, it is recommended to derive designs robust across a variety of systems. However, incorporating such uncertainty into the design process can be a computationally intense exercise. Hence, our analytic approach is explored as an alternative.