980 resultados para Radiogenic isotope
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Impact cratering has been a fundamental geological process in Earth history with major ramifications for the biosphere. The complexity of shocked and melted rocks within impact structures presents difficulties for accurate and precise radiogenic isotope age determination, hampering the assessment of the effects of an individual event in the geological record. We demonstrate the utility of a multi-chronometer approach in our study of samples from the 40 km diameter Araguainha impact structure of central Brazil. Samples of uplifted basement granite display abundant evidence of shock deformation, but U/Pb ages of shocked zircons and the Ar-40/Ar-39 ages of feldspar from the granite largely preserve the igneous crystallization and cooling history. Mixed results are obtained from in situ Ar-40/Ar-39 spot analyses of shocked igneous biotites in the granite, with deformation along kink-bands resulting in highly localized, partial resetting in these grains. Likewise, spot analyses of perlitic glass from pseudotachylitic breccia samples reflect a combination of argon inheritance from wall rock material, the age of the glass itself, and post-impact devitrification. The timing of crater formation is better assessed using samples of impact-generated melt rock where isotopic resetting is associated with textural evidence of melting and in situ crystallization. Granular aggregates of neocrystallized zircon form a cluster of ten U-Pb ages that yield a "Concordia" age of 247.8 +/- 3.8 Ma. The possibility of Pb loss from this population suggests that this is a minimum age for the impact event. The best evidence for the age of the impact comes from the U-Th-Pb dating of neocrystallized monazite and Ar-40/Ar-39 step heating of three separate populations of post-impact, inclusion-rich quartz grains that are derived from the infill of miarolitic cavities. The Pb-206/U-238 age of 254.5 +/- 3.2 Ma (2 sigma error) and Pb-208/Th-232 age of 255.2 +/- 4.8 Ma (2 sigma error) of monazite, together with the inverse, 18 point isochron age of 254 +/- 10 Ma (MSWD = 0.52) for the inclusion-rich quartz grains yield a weighted mean age of 254.7 +/- 2.5 Ma (0.99%, 2 sigma error) for the impact event. The age of the Araguainha crater overlaps with the timing of the Permo-Triassic boundary, within error, but the calculated energy released by the Araguainha impact is insufficient to be a direct cause of the global mass extinction. However, the regional effects of the Araguainha impact event in the Parana-Karoo Basin may have been substantial. (C) 2012 Elsevier Ltd. All rights reserved.
Chemical composition and isotopic ratios of basic lavas from Iceland and the surrounding ocean floor
Resumo:
Major and trace dement data are used to establish the nature and extent of spatial and temporal chemical variations in basalts erupted in the Iceland region of the North Atlantic Ocean. The ocean floor samples are those recovered by legs 38 and 49 of the Deep Sea Drilling Project. Within each of the active zones on Iceland there are small scale variations in the light rare earth elements and ratios such as K/Y: several central complexes and their associated fissure swarms erupt basalts with values of K/Y distinct from those erupted at adjacent centres; also basalts showing a wide range of immobile trace element ratios occur together within single vertical sections and ocean floor drill holes. Although such variations can be explained in terms of the magmatic processes operating on Iceland they make extrapolations from single basalt samples to mantle sources underlying the outcrop of the sample highly tenuous. 87Sr/86Sr ratios measured for 25 of the samples indicate a total range from 0.7028 in a tholeiite from the Reykjanes Ridge to 0.7034 in an alkali basalt from Iceland and are consistent with other published ratios from the region. A positive correlation between 87Sr/86Sr and Ce/Yb ratios indicates the existence of systematic isotopic and elemental variations in the mantle source region. An approximately fivefold variation in Ce/Yb ratio observed in basalts with the same 87Sr/86Sr ratio implies that different degrees and types of partial melting have been involved in magma genesis from a single mantle composition. 87Sr/86Sr ratios above 0.7028, Th/U ratios close to 4 and La/Ta ratios close to 10 distinguish most basalts erupted in this part of the North Atlantic Ocean from normal mid-ocean ridge basalt (N-type MORB) - although N-type MORB has been erupted at extinct spreading axes just to the north and northeast of Iceland as well as the presently active Iceland-Jan Mayen Ridge. Comparisons with the hygromagmatophile element and radiogenic isotope ratios of MORB and the estimated primordial mantle indicate that the mantle sources producing Iceland basalts have undergone previous depletion followed by more recent enrichment events. A veined mantle source region is proposed in preference to the mantle plume model to explain the chemical variations.
Resumo:
Strontium and neodymium radiogenic isotope ratios in early to middle Eocene fossil fish debris (ichthyoliths) from Lomonosov Ridge (Integrated Ocean Drilling Program Expedition 302) help constrain water mass compositions in the Eocene Arctic Ocean between 55 and 45 Ma. The inferred paleodepositional setting was a shallow, offshore marine to marginal marine environment with limited connections to surrounding ocean basins. The new data demonstrate that sources of Nd and Sr in fish debris were distinct from each other, consistent with a salinity-stratified water column above Lomonosov Ridge in the Eocene. The 87Sr/86Sr values of ichthyoliths (0.7079 - 0.7087) are more radiogenic than Eocene seawater, requiring brackish to fresh water conditions in the environment where fish metabolized Sr. The 87Sr/86Sr variations probably record changes in the overall balance of river Sr flux to the Eocene Arctic Ocean between 55 and 45 Ma and are used here to reconstruct surface water salinity values. The eNd values of ichthyoliths vary between -5.7 and -7.8, compatible with periodic (or intermittent) supply of Nd to Eocene Arctic intermediate water (AIW) from adjacent seas. Although the Norwegian-Greenland Sea and North Atlantic Ocean were the most likely sources of Eocene AIW Nd, input from the Tethys Sea (via the Turgay Strait in early Eocene time) and the North Pacific Ocean (via a proto-Bering Strait) also contributed.
Resumo:
Major element, trace element, and radiogenic isotope compositions of samples collected from Ocean Drilling Program Leg 126 in the Izu-Bonin forearc basin are presented. Lavas from the center of the basin (Site 793) are high-MgO, low-Ti, two-pyroxene basaltic andesites, and represent the products of synrift volcanism in the forearc region. These synrift lavas share many of the geochemical and petrographic characteristics of boninites. In terms of their element abundances, ratios, and isotope systematics they are intermediate between low-Ti arc tholeiites from the active arc and boninites of the outer-arc high. These features suggest a systematic geochemical gradation between volcanics related to trench distance and a variably depleted source. A basement high drilled on the western flank of the basin (Site 792) comprises a series of plagioclase-rich two-pyroxene andesites with calc-alkaline affinities. These lavas are similar to calc-alkaline volcanics from Japan, but have lower contents of Ti, Zr, and low-field-strength elements (LFSE). Lavas from Site 793 show inter-element variations between Zr, Ti, Sr, Ni, and Cr that are consistent with those predicted during crystallization and melting processes. In comparison, concentrations of P, Y, LFSE, and the rare-earth elements (REE) are anomalous. These elements have been redistributed within the lava pile, concentrating particularly in sections of massive and pillowed flows. Relative movement of these two-element groupings can be related to the alteration of interstitial basaltic andesite glass to a clay mineral assemblage by a post-eruptive process. Fluid-rock interaction has produced similar effects in the basement lavas of Site 792. In this sequence, andesites and dacites have undergone a volume change related to silica mobility. As a result of this process, some lithologies have the major element characteristics of basaltic andesite and rhyolite, but can be related to andesitic or dacitic precursors by silica removal or addition.
Resumo:
Based on the investigation of samples recovered during Cruise 25 of the R/V ''Akademik Nikolai Strakhov'', the character of magmatism was determined in the flank parts of the rift zone at the 74°05'N and 73°50'N region, where the direction of the rift valley changes from the north-northwest in the Knipovich Ridge to the northeast-trending structures of the Mohns Ridge. It was shown that the tholeiitic magmas of this region shows all the geochemical characteristics of TOR-2, which is typical of the Mohns Ridge and most oceanic rift zones worldwide, and differ from the basalts of the Knipovich Ridge, which are assigned to a shallower type of tholeiitic magmatism (Na-TOR). The persistent depletion of the magmas in terms of lithophile element contents and radiogenic isotope ratios of Sr, Nd, and Pb reflects the conditions of their formation during the ascent of the depleted oceanic mantle, which has occurred without significant complications since the early stages of the formation of the Mohns Ridge.
Resumo:
This study focuses on mafic volcanic rocks from the Bouvet triple junction, which fall into six geochemically distinct groups: (1) N-MORB, the most widespread type, encountered throughout the study area. (2) Subalkaline volcanics, hawaiites and mugearites strongly enriched in lithophile elements and radiogenic isotopes and composing the Bouvet volcanic rise, and compositionally similar basalts and basaltic andesites from the Spiess Ridge, generated in a deeper, fertile mantle region. (3) Relatively weakly enriched basalts, T-MORB derived by the mixing of Type 1 and 2 melts and exposed near the axes of the Mid-Atlantic, Southwest Indian, and America-Antarctic Ridges. (4) Basalts with a degree of trace lithophile element enrichment similar to the Spiess Ridge and Bouvet Island rocks, but higher in K, P, Ti, and Cr. These occur within extensional structures: the rift valley of the Southwest Indian Ridge, grabens of the East Dislocation Zone, and the linear rise between the Spiess Ridge and Bouvet volcano. Their parental melts presumably separated from plume material that spread from the main channels and underwent fluid-involving differentiation in the mantle. (5) A volcanic suite ranging from basalt to rhyolite, characterized by low concentrations of lithophile elements, particularly TiO2, and occurring on the Shona Seamount and other compressional features within the Antarctic and South American plates near the Bouvet triple junction. Unlike Types 1 to 4, which display tholeiitic differentiation trends, this suite is calc-alkaline. Its parental melts were presumably related to the plume material as well but, subsequently, they underwent a profound differentiation involving fluids and assimilated surrounding rocks in closed magma chambers in the upper mantle. Alternatively, the Shona Seamount might be a fragment of an ancient oceanic island arc. (6) Enriched basalts, distinguished from the other enriched rock types in very high P and radiogenic isotope abundances and composing a tectonic uplift near the junction of the three rifts. It thus follows that the main factors responsible for the compositional diversity of volcanic rocks in this region include (i) mantle source heterogeneity, (ii) plume activity, (iii) an intricate geodynamic setup at the triple junction giving rise to stresses in adjacent plate areas, and (iv) the geological prehistory. The slow spreading rate and ensuing inefficient mixing of the heterogeneous mantle material result in strong spatial variations in basaltic compositions.
Resumo:
The proposed origins for the Enriched Mantle I component are many and various and some require an arbitrary addition of an exotic component, be it pure sediment or an enriched melt from the subcontinental lithosphere. With Pitcairn, Walvis Ridge is the 'type-locality' for the Enriched Mantle I (EMI) component. We analyzed basalts from DSDP Site 525A, Site 527 and Site 528 on the Walvis Ridge with the aim to constrain the history of its source. The isotopic compositions we measured for the three sites overlap with the values obtained by Richardson et al. (1982a) and extend towards less radiogenic Sr and more radiogenic Pb and Nd isotopic compositions. We used our new trace element and radiogenic isotope (Hf, Nd, Pb and Sr) characterization in combination with the literature data to produce the simplest possible model that satisfies the trace element and isotopic constraints. Although the elevated 207Pb/204Pb with respect to 206Pb/204Pb predicts an ancient origin for EMI, none of the proposed origins had modeled it as such. The data is consistent with the EMI composition being formed by the addition of a melt to a mantle with bulk Earth-like composition followed by melt extraction of a low degree melt. The timing of these two events is such that the metasomatism has to have taken place prior to 4 Ga and the subsequent melt removal before 3.5 Ga. This confirms the expectation of an ancient character for the EMI component. The Walvis Ridge data shows two distinct two component mixing trends: one formed by the less enriched Site 527 and Site 528 basalts and one formed by the Site 525A basalts. The two trends have the EMI endmember in common. The less depleted end of the Site 527-Site 528 basalts is FOZO-like and can be explained by the addition of a recycled component (basaltic oceanic crust plus sediment). This recycled component was altered during subduction. The sense and magnitude of the chemical fractionation resulting from the subduction alteration are in agreement with dehydration experiments on basalts and sediment. Compared to other EMI like basalts the Walvis Ridge basalts have flatter REE patterns and show less fractionation between large ion lithophile and heavy REE elements. Using the isotopic compositions as constrains for the parent-daughter ratios we were able to model the trace element patterns of the basalts as melting between 5 and 10% for Site 525A and between 10 and 15% for the depleted end of the Site 528-Site 527 array. In all cases a significant portion of melting takes place in the garnet stability field.
Resumo:
The influence of atmospheric dust on climate and biogeochemical cycles in the oceans is well understood but poorly quantified. Glacial atmospheric dust loads were generally greater than those during the Holocene, as shown, for example, by the covariation of dust fluxes in the Equatorial Pacific and Antarctic ice cores. Nevertheless, it remains unclear whether these increases in dust flux were associated with changes in sources of dust, which would in turn suggest variations in wind patterns, climate or paleo-environment. Such questions can be answered using radiogenic isotope tracers of dust provenance. Here, we present a 160-kyr high-precision lead isotope time-series of dust input to the Eastern Equatorial Pacific (EEP) from core ODP Leg 138, Site 849 (0°11.59' N, 110°31.18' W). The Pb isotope record, combined with Nd isotope data, rules out contributions from Northern Hemisphere dust sources, north of the Intertropical Convergence Zone, such as Asia or North Africa/Sahara; similarly, eolian sources in Australia, Central America, the Northern Andes and Patagonia appear insignificant based upon the radiogenic isotope data. Fluctuations in Pb isotope ratios throughout the last 160 kyr show, instead, that South America remained the prevailing source of dusts to the EEP. There are two distinct South American Pb isotope end-members, constrained to be located in the south Central Volcanic Zone (CVZ, 22° S - 27.5° S) and the South Volcanic Zone (SVZ, 33° S - 43° S), with the former most likely originating in the Atacama Desert. Dust availability in the SVZ appears to be related to the weathering of volcanic deposits and the development of ash-derived Andosols, and influenced by local factors that might include vegetation cover. Variations in the dust fluxes from the two sources are in phase with both the dust flux and temperature records from Antarctican ice cores. We show that the forcing of dust provenance over time in the EEP overall is influenced by high-southerly-latitude climate conditions, leading to changes in the latitudinal position and strength of the South Westerlies as well as the coastal winds that blow northward along the Chilean margin. The net result is a modulation of dust emission from the Atacama Desert and the SVZ via a northward migration of the South Westerlies during cold periods and southward retreat during glacial terminations.
Resumo:
We present new U-series disequilibrium and radiogenic isotope data for 7 mafic lavas from the Lesser Antilles arc. These are combined with published data in an internally consistent model that quantitatively estimates the amount of sediment and fluid added to the source of the Lesser Antilles arc system. Some lavas form an array consistent with bulk sediment addition (0.2-2%) whereas others appear to require addition of 0.4-2% sediment melt, particularly in the south of the arc. Evidence for both bulk sediment and sediment melt addition can be found within both the northern and central sections of the arc suggesting a thermal structure whereby the upper portions of the subducted sediment pile lie close to their solidus beneath much of the arc. Addition of up to 5% fluid derived from altered oceanic crust to these sediment enriched mantle wedge source regions can simulate the majority of the lavas on a plot of 207Pb/204Pb versus Ce/Pb. By taking into account the range in calculated wedge compositions and allowing for some mobility of Th in the fluid, the same model can also account for much of the observed range of U-Th-Ra disequilibria, especially if the eclogitic residue contains trace amounts of rutile. The implication of this more complex model is that the time scales for fluid addition and differentiation could be significantly shorter than those estimated in some previous studies.
Resumo:
Many marine radiogenic isotope records show both spatial and temporal variations, reflecting both the degree of mixing of distinct sources in the oceans and changes in the distribution of chemical weathering on the continents. However, changes in weathering and transport processes may themselves affect the composition of radiogenic isotopes released into seawater. The provenance of physically weathered material in the Labrador Sea, constrained through the use of Ar-Ar ages of individual detrital minerals, has been used to estimate the relative contributions of chemically weathered terranes releasing radiogenic isotopes into the Labrador Sea. A simple box-model approach for balancing observed Nd-isotope variations has been used to constrain the relative importance of localised input in the Labrador Sea, and the subsequent mixing of Labrador Sea Water into North Atlantic Deep-Water. The long-term pattern of erosion and deep-water formation around the North Atlantic seems to have been a relatively stable feature since 1.5 Ma, although there has been a dramatic shift in the nature of physical and chemical weathering affecting the release of Hf and Pb isotopes. The modelled Nd isotopes imply a relative decrease in water mass advection into the Labrador Sea between 2.4 and 1.5 Ma, accompanied by a decrease in the rate of overturning, possibly caused by an increased freshwater input into the Labrador Sea.
Resumo:
The "Ko'olau" component of the Hawaiian mantle plume represents an extreme (EM1-type) end member of Hawaiian shield lavas in radiogenic isotope space, and was defined on the basis of the composition of subaerial lavas exposed in the Makapu'u section of Ko'olau Volcano. The 679 m-deep Ko'olau Scientific Drilling Project (KSDP) allows the long-term evolution of Ko'olau Volcano to be reconstructed and the longevity of the "Ko'olau" component in the Hawaiian plume to be tested. Here, we report triple spike Pb isotope and Sr and Nd isotope data on KSDP core samples, and rejuvenation stage Honolulu Volcanics (HV) (together spanning ~2.8 m.y.), and from ~110 Ma basalts from ODP Site 843, thought to be representative of the Pacific lithosphere under Hawai'i. Despite overlapping ranges in Pb isotope ratios, KSDP and HV lavas form two distinct linear arrays in 208Pb/204Pb-206Pb/204Pb isotope space. These arrays intersect at the radiogenic end indicating they share a common component. This "Kalihi" component has more radiogenic Pb, Nd, Hf, but less radiogenic Sr isotope ratios than the "Makapu'u" component. The mixing proportions of these two components in the lavas oscillated through time with a net increase in the "Makapu'u" component upsection. Thus, the "Makapu'u" enriched component is a long-lived feature of the Hawaiian plume, since it is present in the main shield-building stage KSDP lavas. We interpret the changes in mixing proportions of the Makapu'u and Kalihi components as related to changes in both the extent of melting as well as the lithology (eclogite vs. peridotite) of the material melting as the volcano moves away from the plume center. The long-term Nd isotope trend and short-term Pb isotope fluctuations seen in the KSDP record cannot be ascribed to a radial zonation of the Hawaiian plume: rather, they reflect the short length-scale heterogeneities in the Hawaiian mantle plume. Linear Pb isotope regressions through the HV, recent East Pacific Rise MORB and ODP Site 843 datasets are clearly distinct, implying that no simple genetic relationship exists between the HV and the Pacific lithosphere. This observation provides strong evidence against generation of HV as melts derived from the Pacific lithosphere, whether this be recent or old (100 Ma). The depleted component present in the HV is unlike any MORB-type mantle and most likely represents material thermally entrained by the upwelling Hawaiian plume and sampled only during the rejuvenated stage. The "Kalihi" component is predominant in the main shield building stage lavas but is also present in the rejuvenated HV. Thus this material is sampled throughout the evolution of the volcano as it moves from the center (main shield-building stage) to the periphery (rejuvenated stage) of the plume. The presence of a plume-derived material in the rejuvenated stage has significant implications for Hawaiian mantle plume melting models.