956 resultados para Radioactive pollution of water.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new approach that is slowly replacing neoclassical models of economic growth and commodity based industrial activities, knowledge based urban development (KBUD) aims to provide opportunities for citiesw to foster knowledge creation, exchange and innovation, and is based on the concepts of both sustainable urban development and economic prosperity; sustainable uses and protection of natural resources are therefore integral parts of KBUD. As such, stormwater, which has been recognised as one of the main culprits of aquatic ecosystem pollution and as therefore a significant threat to the goal of sustainable urban development, needs to be managed in a manner that produces ecologically sound outcomes. Water sensitive urban design (WSUD) is one of the key responses to the need to better management urban stormwater runoff and supports KBUD by providing an alternative, innovative and effective strategy to traditional stormwater management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microbial pollution in water periodically affects human health in Australia, particularly in times of drought and flood. There is an increasing need for the control of waterborn microbial pathogens. Methods, allowing the determination of the origin of faecal contamination in water, are generally referred to as Microbial Source Tracking (MST). Various approaches have been evaluated as indicatorsof microbial pathogens in water samples, including detection of different microorganisms and various host-specific markers. However, until today there have been no universal MST methods that could reliably determine the source (human or animal) of faecal contamination. Therefore, the use of multiple approaches is frequently advised. MST is currently recognised as a research tool, rather than something to be included in routine practices. The main focus of this research was to develop novel and universally applicable methods to meet the demands for MST methods in routine testing of water samples. Escherichia coli was chosen initially as the object organism for our studies as, historically and globally, it is the standard indicator of microbial contamination in water. In this thesis, three approaches are described: single nucleotide polymorphism (SNP) genotyping, clustered regularly interspaced short palindromic repeats (CRISPR) screening using high resolution melt analysis (HRMA) methods and phage detection development based on CRISPR types. The advantage of the combination SNP genotyping and CRISPR genes has been discussed in this study. For the first time, a highly discriminatory single nucleotide polymorphism interrogation of E. coli population was applied to identify the host-specific cluster. Six human and one animal-specific SNP profile were revealed. SNP genotyping was successfully applied in the field investigations of the Coomera watershed, South-East Queensland, Australia. Four human profiles [11], [29], [32] and [45] and animal specific SNP profile [7] were detected in water. Two human-specific profiles [29] and [11] were found to be prevalent in the samples over a time period of years. The rainfall (24 and 72 hours), tide height and time, general land use (rural, suburban), seasons, distance from the river mouth and salinity show a lack of relashionship with the diversity of SNP profiles present in the Coomera watershed (p values > 0.05). Nevertheless, SNP genotyping method is able to identify and distinquish between human- and non-human specific E. coli isolates in water sources within one day. In some samples, only mixed profiles were detected. To further investigate host-specificity in these mixed profiles CRISPR screening protocol was developed, to be used on the set of E. coli, previously analysed for SNP profiles. CRISPR loci, which are the pattern of previous DNA coliphages attacks, were considered to be a promising tool for detecting host-specific markers in E. coli. Spacers in CRISPR loci could also reveal the dynamics of virulence in E. coli as well in other pathogens in water. Despite the fact that host-specificity was not observed in the set of E. coli analysed, CRISPR alleles were shown to be useful in detection of the geographical site of sources. HRMA allows determination of ‘different’ and ‘same’ CRISPR alleles and can be introduced in water monitoring as a cost-effective and rapid method. Overall, we show that the identified human specific SNP profiles [11], [29], [32] and [45] can be useful as marker genotypes globally for identification of human faecal contamination in water. Developed in the current study, the SNP typing approach can be used in water monitoring laboratories as an inexpensive, high-throughput and easy adapted protocol. The unique approach based on E. coli spacers for the search for unknown phage was developed to examine the host-specifity in phage sequences. Preliminary experiments on the recombinant plasmids showed the possibility of using this method for recovering phage sequences. Future studies will determine the host-specificity of DNA phage genotyping as soon as first reliable sequences can be acquired. No doubt, only implication of multiple approaches in MST will allow identification of the character of microbial contamination with higher confidence and readability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focus of this article is on the cost-effectiveness of mitigation strategies to reduce pollution loads and improve water quality in South-East Queensland. Scenarios were developed about the types of catchment interventions that could be considered, and the resulting changes in water quality indicators that may result. Once these catchment scenarios were modelled, the range of expected outcomes was assessed and the costs of mitigation interventions were estimated. Strategies considered include point and non-point source interventions. Predicted reductions in pollution levels were calculated for each action based on the expected population growth. The cost of the interventions included the full investment and annual running costs as well as planned public investment by the state agencies. Cost-effectiveness of strategies is likely to vary according to whether suspended sediments, nitrogen or phosphorus loads are being targeted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapidly expanding population and economic growth in the seven counties of the East Central Florida Regional Planning Council as shown in Figure 1, herein called the East Central Florida Region or the Region, has resulted in increasing demands on its water resources. Although there is abundant water in the Region as a whole, the water in some areas of the Region is of unacceptable quality for most uses. As the population increases the demand for water will become much greater and the available supply may be reduced by pollution and increased drainage necessitated by urbanization and other land development- Ground-water supplies can be increased by capturing and storing water underground that now drains to the sea or evaporates from swamp areas. Research is needed, however, to develop artificial-recharge methods that are feasible and which will preserve or improve the quality of water in the aquifer. (PDF contains 57 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract The rapid growth of both formal and informal high density urban settlements around major water resources has led to increased pollution of streams, rivers, lakes and estuaries, due to contaminated runoff from these developments. The paper identified major contaminants to be : organic waste (sewage), industrial effluent, pesticides and litter. Pollutant loads vary depending on the hydrology of the urban area, local topography and soil conditions. In some instances, severe pollution of neighbouring and downstream water courses has been observed. The management of catchment land uses, riparian zones, in stream habitat, as well as in stream water flow patterns and quality are necessary in order to sustain the integrity and "health" of water resources, for fisheries and other developments. As such, attempts to ensure a certain level of water quality without attention to other aspects will not automatically ensure a "healthy" ecosystem even as fish habitat. Proper management leads to better water quality and conducive environment for increased fish production

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research work involves the determination and modelling of water parameter such as pH, temperature, turbidity, chloride, hardness. The result of the analysis was used as important operating variables to generate a model equation of pH, hardness, temperature, turbidity and chloride. The values obtained from the model equation were compared with those from experiment. On an average bases the values were close. These parameters can be used to monitor the extent of pollution of pond water and to monitor stress and diseases of fish. The experimental data of pH was in the range of 6.7 to 6.9 while the modelled result was also between 6.7 to 7.0. The turbidity experimental value was close to the modelled value also. The chloride value for the experimental data was in the range of 25.32 to 35.0. The total hardness value ranges between 4.5 to 65.1 mg/l while the modelled result ranges between 11.025 to 68.402 mg/l. The result was within the acceptable limit of world health organization standard on water quality parameter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the background to the development of an analytical quality control procedure for the Trophic Diatom Index (TDI) is explained, highlighting some of the statistical and taxonomic problems encountered, and going on to demonstrate how the system works in practice. Most diatom-based pollution indices, including the TDI, use changes in the relative proportions of different taxa to indicate changing environmental conditions. The techniques involved are therefore much simpler than those involved in many studies of phytoplankton, for example, where absolute numbers are required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Guided by experience and the theoretical development of hydrobiology, it can be considered that the main aim of water quality control should be the establishment of the rates of the self-purification process of water bodies which are capable of maintaining communities in a state of dynamic balance without changing the integrity of the ecosystem. Hence, general approaches in the elaboration of methods for hydrobiological control are based on the following principles: a. the balance of matter and energy in water bodies; b. the integrity of the ecosystem structure and of its separate components at all levels. Ecosystem analysis makes possible a revelation of the whole totality of factors which determine the anthropogenic evolution of a water body. This is necessary for the study of long-term changes in water bodies. The principles of ecosystem analysis of water bodies, together with the creation of their mathematical models, are important because, in future, with the transition of water demanding production into closed cycles of water supply, changes in water bodies will arise in the main through the influence of 'diffuse' pollution (from the atmosphere, with utilisation in transport etc.).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the study of questions relating to the quality of raw water and the biological produc- tivity of water bodies algal indicators have an important place. Despite the importance of these functional indicators in determining the quality of water and the nature of the production processes as a basis for preserving the ecological equilibrium of aquatic ecosystems, their use in the system of hydrobiological methods of monitoring the quality of surface water has not received proper consideration. This paper aims to analyse the matter and the possibl use of functional algal criteria in the system for the biological monitoring of aquatic objects and also to give some results in using these criteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Usually stenobiotic species are used as hydrobiological indicators of the degree of pollution in natural waters. Cladocera are eurybiotic organisms, therefore their role as specific indicators of the water quality is considered to be insignificant. However, considering new methods Cladocera at present are more and more often used as indicators of oligo- and mesosaprobic waters as well as of the presence of considerable amounts of easily degradable organic matter. Work over many years on the biology of Polyphemus pediculus, this striking representative of the order Cladocera, convinced the author of the possibility of using this species not only as an indicator of water purity but also for the estimation of the degree of water pollution as well as of water characteristics such as colour, turbidity, oxgen content and chemical composition. P. pediculus is one of the most common and abundant species of planktonic crustaceans in shallow waters of reservoirs, rivers, lakes, ponds and temporary water bodies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some problems of evaluation of water quality by biological indices which can be applied in the practice of ecological monitoring on water bodies are considered in this report. Taking into account, that ecological monitoring is the most urgent for large lakes, situated in civilised (urbanised) and (or) agrarian landscapes the corresponding problems will be considered mainly in conformity with large deep lakes of temperate latitudes. The aim is a general evaluation of some of the methods from the point of view of their possible application for monitoring on large water bodies.