972 resultados para Radio wave propagation
Resumo:
Understanding the radio signal transmission characteristics in the environment where the telerobotic application is sought is a key part of achieving a reliable wireless communication link between a telerobot and a control station. In this paper, wireless communication requirements and a case study of a typical telerobotic application in an underground facility at CERN are presented. Then, the theoretical and experimental characteristics of radio propagation are investigated with respect to time, distance, location and surrounding objects. Based on analysis of the experimental findings, we show how a commercial wireless system, such as Wi-Fi, can be made suitable for a case study application at CERN.
Resumo:
Caption title.
Resumo:
Reproduced from typewritten copy.
Resumo:
Includes abstract.
Resumo:
"October 1970."
Resumo:
"October 1977."
Resumo:
"Journal of the United States National Committee, International Union of Radio Science."
Resumo:
Includes bibliographical references.
Resumo:
The numerical solution of the time dependent wave equation in an unbounded domain generally leads to a truncation of this domain, which requires the introduction of an artificial boundary with associated boundary conditions. Such nonreflecting conditions ensure the equivalence between the solution of the original problem in the unbounded region and the solution inside the artificial boundary. We consider the acoustic wave equation and derive exact transparent boundary conditions that are local in time and can be directly used in explicit methods. These conditions annihilate wave harmonics up to a given order on a spherical artificial boundary, and we show how to combine the derived boundary condition with a finite difference method. The analysis is complemented by a numerical example in two spatial dimensions that illustrates the usefulness and accuracy of transparent boundary conditions.
Resumo:
The ultrasonic non-destructive testing of components may encounter considerable difficulties to interpret some inspections results mainly in anisotropic crystalline structures. A numerical method for the simulation of elastic wave propagation in homogeneous elastically anisotropic media, based on the general finite element approach, is used to help this interpretation. The successful modeling of elastic field associated with NDE is based on the generation of a realistic pulsed ultrasonic wave, which is launched from a piezoelectric transducer into the material under inspection. The values of elastic constants are great interest information that provide the application of equations analytical models, until small and medium complexity problems through programs of numerical analysis as finite elements and/or boundary elements. The aim of this work is the comparison between the results of numerical solution of an ultrasonic wave, which is obtained from transient excitation pulse that can be specified by either force or displacement variation across the aperture of the transducer, and the results obtained from a experiment that was realized in an aluminum block in the IEN Ultrasonic Laboratory. The wave propagation can be simulated using all the characteristics of the material used in the experiment evaluation associated to boundary conditions and from these results, the comparison can be made.
Resumo:
We investigate the application of time-reversed electromagnetic wave propagation to transmit energy in a wireless power transmission system. “Time reversal” is a signal focusing method that exploits the time reversal invariance of the lossless wave equation to direct signals onto a single point inside a complex scattering environment. In this work, we explore the properties of time reversed microwave pulses in a low-loss ray-chaotic chamber. We measure the spatial profile of the collapsing wavefront around the target antenna, and demonstrate that time reversal can be used to transfer energy to a receiver in motion. We demonstrate how nonlinear elements can be controlled to selectively focus on one target out of a group. Finally, we discuss the design of a rectenna for use in a time reversal system. We explore the implication of these results, and how they may be applied in future technologies.
Resumo:
The thesis uses a three-dimensional, first-principles model of the ionosphere in combination with High Frequency (HF) raytracing model to address key topics related to the physics of HF propagation and artificial ionospheric heating. In particular: 1. Explores the effect of the ubiquitous electron density gradients caused by Medium Scale Traveling Ionospheric Disturbances (MSTIDs) on high-angle of incidence HF radio wave propagation. Previous studies neglected the all-important presence of horizontal gradients in both the cross- and down-range directions, which refract the HF waves, significantly changing their path through the ionosphere. The physics-based ionosphere model SAMI3/ESF is used to generate a self-consistently evolving MSTID that allows for the examination of the spatio-temporal progression of the HF radio waves in the ionosphere. 2. Tests the potential and determines engineering requirements for ground- based high power HF heaters to trigger and control the evolution of Equatorial Spread F (ESF). Interference from ESF on radio wave propagation through the ionosphere remains a critical issue on HF systems reliability. Artificial HF heating has been shown to create plasma density cavities in the ionosphere similar to those that may trigger ESF bubbles. The work explores whether HF heating may trigger or control ESF bubbles. 3. Uses the combined ionosphere and HF raytracing models to create the first self-consistent HF Heating model. This model is utilized to simulate results from an Arecibo experiment and to provide understanding of the physical mechanism behind observed phenomena. The insights gained provide engineering guidance for new artificial heaters that are being built for use in low to middle latitude regions. In accomplishing the above topics: (i) I generated a model MSTID using the SAMI3/ESF code, and used a raytrace model to examine the effects of the MSTID gradients on radio wave propagation observables; (ii) I implemented a three- dimensional HF heating model in SAMI3/ESF and used the model to determine whether HF heating could artificially generate an ESF bubble; (iii) I created the first self-consistent model for artificial HF heating using the SAMI3/ESF ionosphere model and the MoJo raytrace model and ran a series of simulations that successfully modeled the results of early artificial heating experiments at Arecibo.
Resumo:
This technical report describes the Mobility Simulator that implements a simulation model of the station mobility and the radio wave propagation.
Resumo:
This article summarizes the main achievementsof the Multi-Element Transmit andReceive Antennas (METRA) Project, an ISTresearch and technological development project carried out between January 2000 and June 2001 by Universitat Politècnica de Catalunya, the Center for Personkommunikation of Aalborg University, Nokia Networks, Nokia Mobile Phones, and Vodafone Group Research and Development.The main objective of METRA was the performanceevaluation of multi-antenna terminals incombination with adaptive antennas at the basestation in UMTS communication systems. 1 AMIMO channel sounder was developed that providedrealistic multi-antenna channel measurements.Using these measured data, stochasticchannel models were developed and properly validated.These models were also evaluated inorder to estimate their corresponding channelcapacity. Different MIMO configurations andprocessing schemes were developed for both theFDD and TDD modes of UTRA, and their linkperformance was assessed. Performance evaluationwas completed by system simulations thatillustrated the benefits of MIMO configurationsto the network operator. Implementation cost vs.performance improvement was also covered bythe project, including the base station and terminalmanufacturer and network operator viewpoints.Finally, significant standards contributionswere generated by the project and presented to the pertinent 3GPP working groups.