992 resultados para Radio noise


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sirens used by police, fire and paramedic vehicles have been designed so that they can be heard over large distances, but unfortunately the siren noise enters the vehicle and corrupts intelligibility of voice communications from the emergency vehicle to the control room. Often the siren needs to be turned off to enable the control room to hear what is being said. This paper discusses a siren noise filter system that is capable of removing the siren noise picked up by the two-way radio microphone inside the vehicle. The removal of the siren noise improves the response time for emergency vehicles and thus save lives. To date, the system has been trialed within a fire tender in a non-emergency situation, with good results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of an adaptive filter system, capable of reducing significantly the effect of siren noise within the cab of an emergency vehicle, is described. The system is capable of removing the siren noise picked up by the radio microphone inside the vehicle, without degrading the wanted voice signal, thus allowing the siren to be used at all times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Emergency vehicles use high-amplitude sirens to warn pedestrians and other road users of their presence. Unfortunately, the siren noise enters the vehicle and corrupts the intelligibility of two-way radio voice com-munications from the emergency vehicle to a control room. Often the siren has to be turned off to enable the control room to hear what is being said which subsequently endangers people's lives. A digital signal processing (DSP) based system for the cancellation of siren noise embedded within speech is presented. The system has been tested with the least mean square (LMS), normalised least mean square (NLMS) and affine projection algorithm (APA) using recordings from three common types of sirens (two-tone, wail and yelp) from actual test vehicles. It was found that the APA with a projection order of 2 gives comparably improved cancellation over the LMS and NLMS with only a moderate increase in algorithm complexity and code size. Therefore, this siren noise cancellation system using the APA offers an improvement in cancellation achieved by previous systems. The removal of the siren noise improves the response time for the emergency vehicle and thus the system can contribute to saving lives. The system also allows voice communication to take place even when the siren is on and as such the vehicle offers less risk of danger when moving at high speeds in heavy traffic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interference by siren background-noise with speech transmitted from radio equipment (3) of an emergency-service vehicle, is reduced by apparatus (1) that subtracts (43) an estimate nk of the correlated siren-noise component from the contaminated signal yk supplied by the cab-microphone (2). The estimate nk is computed by FIR (finite impulse response) filtering of a siren-reference signal xk supplied by a unit (4) from one or more microphones located on or near the siren, or from the electric waveform driving the siren. The filter-coefficients wk are adjusted according to an LMS (least mean square) adaptive algorithm that is applied to the correlated-noise component ek of the fed-back noise-reduced signal, so as to bring about iterative cancellation with close frequency-tracking, of the siren noise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Pierre Auger Observatory is exploring the potential of the radio detection technique to study extensive air showers induced by ultra-high energy cosmic rays. The Auger Engineering Radio Array (AERA) addresses both technological and scientific aspects of the radio technique. A first phase of AERA has been operating since September 2010 with detector stations observing radio signals at frequencies between 30 and 80 MHz. In this paper we present comparative studies to identify and optimize the antenna design for the final configuration of AERA consisting of 160 individual radio detector stations. The transient nature of the air shower signal requires a detailed description of the antenna sensor. As the ultra-wideband reception of pulses is not widely discussed in antenna literature, we review the relevant antenna characteristics and enhance theoretical considerations towards the impulse response of antennas including polarization effects and multiple signal reflections. On the basis of the vector effective length we study the transient response characteristics of three candidate antennas in the time domain. Observing the variation of the continuous galactic background intensity we rank the antennas with respect to the noise level added to the galactic signal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this thesis is to investigate the strength and structure of the magnetized medium surrounding radio galaxies via observations of the Faraday effect. This study is based on an analysis of the polarization properties of radio galaxies selected to have a range of morphologies (elongated tails, or lobes with small axial ratios) and to be located in a variety of environments (from rich cluster core to small group). The targets include famous objects like M84 and M87. A key aspect of this work is the combination of accurate radio imaging with high-quality X-ray data for the gas surrounding the sources. Although the focus of this thesis is primarily observational, I developed analytical models and performed two- and three-dimensional numerical simulations of magnetic fields. The steps of the thesis are: (a) to analyze new and archival observations of Faraday rotation measure (RM) across radio galaxies and (b) to interpret these and existing RM images using sophisticated two and three-dimensional Monte Carlo simulations. The approach has been to select a few bright, very extended and highly polarized radio galaxies. This is essential to have high signal-to-noise in polarization over large enough areas to allow computation of spatial statistics such as the structure function (and hence the power spectrum) of rotation measure, which requires a large number of independent measurements. New and archival Very Large Array observations of the target sources have been analyzed in combination with high-quality X-ray data from the Chandra, XMM-Newton and ROSAT satellites. The work has been carried out by making use of: 1) Analytical predictions of the RM structure functions to quantify the RM statistics and to constrain the power spectra of the RM and magnetic field. 2) Two-dimensional Monte Carlo simulations to address the effect of an incomplete sampling of RM distribution and so to determine errors for the power spectra. 3) Methods to combine measurements of RM and depolarization in order to constrain the magnetic-field power spectrum on small scales. 4) Three-dimensional models of the group/cluster environments, including different magnetic field power spectra and gas density distributions. This thesis has shown that the magnetized medium surrounding radio galaxies appears more complicated than was apparent from earlier work. Three distinct types of magnetic-field structure are identified: an isotropic component with large-scale fluctuations, plausibly associated with the intergalactic medium not affected by the presence of a radio source; a well-ordered field draped around the front ends of the radio lobes and a field with small-scale fluctuations in rims of compressed gas surrounding the inner lobes, perhaps associated with a mixing layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Future wireless communications systems are expected to be extremely dynamic, smart and capable to interact with the surrounding radio environment. To implement such advanced devices, cognitive radio (CR) is a promising paradigm, focusing on strategies for acquiring information and learning. The first task of a cognitive systems is spectrum sensing, that has been mainly studied in the context of opportunistic spectrum access, in which cognitive nodes must implement signal detection techniques to identify unused bands for transmission. In the present work, we study different spectrum sensing algorithms, focusing on their statistical description and evaluation of the detection performance. Moving from traditional sensing approaches we consider the presence of practical impairments, and analyze algorithm design. Far from the ambition of cover the broad spectrum of spectrum sensing, we aim at providing contributions to the main classes of sensing techniques. In particular, in the context of energy detection we studied the practical design of the test, considering the case in which the noise power is estimated at the receiver. This analysis allows to deepen the phenomenon of the SNR wall, providing the conditions for its existence and showing that presence of the SNR wall is determined by the accuracy of the noise power estimation process. In the context of the eigenvalue based detectors, that can be adopted by multiple sensors systems, we studied the practical situation in presence of unbalances in the noise power at the receivers. Then, we shift the focus from single band detectors to wideband sensing, proposing a new approach based on information theoretic criteria. This technique is blind and, requiring no threshold setting, can be adopted even if the statistical distribution of the observed data in not known exactly. In the last part of the thesis we analyze some simple cooperative localization techniques based on weighted centroid strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes the developments of new models and toolkits for the orbit determination codes to support and improve the precise radio tracking experiments of the Cassini-Huygens mission, an interplanetary mission to study the Saturn system. The core of the orbit determination process is the comparison between observed observables and computed observables. Disturbances in either the observed or computed observables degrades the orbit determination process. Chapter 2 describes a detailed study of the numerical errors in the Doppler observables computed by NASA's ODP and MONTE, and ESA's AMFIN. A mathematical model of the numerical noise was developed and successfully validated analyzing against the Doppler observables computed by the ODP and MONTE, with typical relative errors smaller than 10%. The numerical noise proved to be, in general, an important source of noise in the orbit determination process and, in some conditions, it may becomes the dominant noise source. Three different approaches to reduce the numerical noise were proposed. Chapter 3 describes the development of the multiarc library, which allows to perform a multi-arc orbit determination with MONTE. The library was developed during the analysis of the Cassini radio science gravity experiments of the Saturn's satellite Rhea. Chapter 4 presents the estimation of the Rhea's gravity field obtained from a joint multi-arc analysis of Cassini R1 and R4 fly-bys, describing in details the spacecraft dynamical model used, the data selection and calibration procedure, and the analysis method followed. In particular, the approach of estimating the full unconstrained quadrupole gravity field was followed, obtaining a solution statistically not compatible with the condition of hydrostatic equilibrium. The solution proved to be stable and reliable. The normalized moment of inertia is in the range 0.37-0.4 indicating that Rhea's may be almost homogeneous, or at least characterized by a small degree of differentiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bibliography: p. 126-129.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The need for low bit-rate speech coding is the result of growing demand on the available radio bandwidth for mobile communications both for military purposes and for the public sector. To meet this growing demand it is required that the available bandwidth be utilized in the most economic way to accommodate more services. Two low bit-rate speech coders have been built and tested in this project. The two coders combine predictive coding with delta modulation, a property which enables them to achieve simultaneously the low bit-rate and good speech quality requirements. To enhance their efficiency, the predictor coefficients and the quantizer step size are updated periodically in each coder. This enables the coders to keep up with changes in the characteristics of the speech signal with time and with changes in the dynamic range of the speech waveform. However, the two coders differ in the method of updating their predictor coefficients. One updates the coefficients once every one hundred sampling periods and extracts the coefficients from input speech samples. This is known in this project as the Forward Adaptive Coder. Since the coefficients are extracted from input speech samples, these must be transmitted to the receiver to reconstruct the transmitted speech sample, thus adding to the transmission bit rate. The other updates its coefficients every sampling period, based on information of output data. This coder is known as the Backward Adaptive Coder. Results of subjective tests showed both coders to be reasonably robust to quantization noise. Both were graded quite good, with the Forward Adaptive performing slightly better, but with a slightly higher transmission bit rate for the same speech quality, than its Backward counterpart. The coders yielded acceptable speech quality of 9.6kbps for the Forward Adaptive and 8kbps for the Backward Adaptive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The detection of signals in the presence of noise is one of the most basic and important problems encountered by communication engineers. Although the literature abounds with analyses of communications in Gaussian noise, relatively little work has appeared dealing with communications in non-Gaussian noise. In this thesis several digital communication systems disturbed by non-Gaussian noise are analysed. The thesis is divided into two main parts. In the first part, a filtered-Poisson impulse noise model is utilized to calulate error probability characteristics of a linear receiver operating in additive impulsive noise. Firstly the effect that non-Gaussian interference has on the performance of a receiver that has been optimized for Gaussian noise is determined. The factors affecting the choice of modulation scheme so as to minimize the deterimental effects of non-Gaussian noise are then discussed. In the second part, a new theoretical model of impulsive noise that fits well with the observed statistics of noise in radio channels below 100 MHz has been developed. This empirical noise model is applied to the detection of known signals in the presence of noise to determine the optimal receiver structure. The performance of such a detector has been assessed and is found to depend on the signal shape, the time-bandwidth product, as well as the signal-to-noise ratio. The optimal signal to minimize the probability of error of; the detector is determined. Attention is then turned to the problem of threshold detection. Detector structure, large sample performance and robustness against errors in the detector parameters are examined. Finally, estimators of such parameters as. the occurrence of an impulse and the parameters in an empirical noise model are developed for the case of an adaptive system with slowly varying conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Competing approaches exist, which allow control of phase noise and frequency tuning in mode-locked lasers, but no judgement of pros and cons based on a comparative analysis was presented yet. Here, we compare results of hybrid mode-locking, hybrid mode-locking with optical injection seeding, and sideband optical injection seeding performed on the same quantum dot laser under identical bias conditions. We achieved the lowest integrated jitter of 121 fs and a record large radio-frequency (RF) tuning range of 342 MHz with sideband injection seeding of the passively mode-locked laser. The combination of hybrid mode-locking together with optical injection-locking resulted in 240 fs integrated jitter and a RF tuning range of 167 MHz. Using conventional hybrid mode-locking, the integrated jitter and the RF tuning range were 620 fs and 10 MHz, respectively. © 2014 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work it was developed mathematical resolutions taking as parameter maximum intensity values for the interference analysis of electric and magnetic fields and was given two virtual computer system that supports families of CDMA and WCDMA technologies. The first family were developed computational resources to solve electric and magnetic field calculations and power densities in Radio Base stations , with the use of CDMA technology in the 800 MHz band , taking into account the permissible values referenced by the Commission International Protection on non-Ionizing Radiation . The first family is divided into two segments of calculation carried out in virtual operation. In the first segment to compute the interference field radiated by the base station with input information such as radio channel power; Gain antenna; Radio channel number; Operating frequency; Losses in the cable; Attenuation of direction; Minimum Distance; Reflections. Said computing system allows to quickly and without the need of implementing instruments for measurements, meet the following calculated values: Effective Radiated Power; Sector Power Density; Electric field in the sector; Magnetic field in the sector; Magnetic flux density; point of maximum permissible exposure of electric field and power density. The results are shown in charts for clarity of view of power density in the industry, as well as the coverage area definition. The computer module also includes folders specifications antennas, cables and towers used in cellular telephony, the following manufacturers: RFS World, Andrew, Karthein and BRASILSAT. Many are presented "links" network access "Internet" to supplement the cable specifications, antennas, etc. . In the second segment of the first family work with more variables , seeking to perform calculations quickly and safely assisting in obtaining results of radio signal loss produced by ERB . This module displays screens representing propagation systems denominated "A" and "B". By propagating "A" are obtained radio signal attenuation calculations in areas of urban models , dense urban , suburban , and rural open . In reflection calculations are present the reflection coefficients , the standing wave ratio , return loss , the reflected power ratio , as well as the loss of the signal by mismatch impedance. With the spread " B" seek radio signal losses in the survey line and not targeted , the effective area , the power density , the received power , the coverage radius , the conversion levels and the gain conversion systems radiant . The second family of virtual computing system consists of 7 modules of which 5 are geared towards the design of WCDMA and 2 technology for calculation of telephone traffic serving CDMA and WCDMA . It includes a portfolio of radiant systems used on the site. In the virtual operation of the module 1 is compute-: distance frequency reuse, channel capacity with noise and without noise, Doppler frequency, modulation rate and channel efficiency; Module 2 includes computes the cell area, thermal noise, noise power (dB), noise figure, signal to noise ratio, bit of power (dBm); with the module 3 reaches the calculation: breakpoint, processing gain (dB) loss in the space of BTS, noise power (w), chip period and frequency reuse factor. Module 4 scales effective radiated power, sectorization gain, voice activity and load effect. The module 5 performs the calculation processing gain (Hz / bps) bit time, bit energy (Ws). Module 6 deals with the telephone traffic and scales 1: traffic volume, occupancy intensity, average time of occupancy, traffic intensity, calls completed, congestion. Module 7 deals with two telephone traffic and allows calculating call completion and not completed in HMM. Tests were performed on the mobile network performance field for the calculation of data relating to: CINP , CPI , RSRP , RSRQ , EARFCN , Drop Call , Block Call , Pilot , Data Bler , RSCP , Short Call, Long Call and Data Call ; ECIO - Short Call and Long Call , Data Call Troughput . As survey were conducted surveys of electric and magnetic field in an ERB , trying to observe the degree of exposure to non-ionizing radiation they are exposed to the general public and occupational element. The results were compared to permissible values for health endorsed by the ICNIRP and the CENELEC .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

UNESCO’s approval of the Convention on the Protection and Promotion of the Diversity of Cultural Expressions (UNESCO, 2005) has been an important element in catalyzing any attempt to measure the diversity of cultural industries (UIS, 2011). Within this framework, this article analyzes the relations between the music and radio industries in Spain from a critical perspective through the analysis of available data on recorded music offer and consumption (sales lists, radio-formula lists, the characteristics of the phonographic and radio markets) in different key moments due to the emergence of new formats and devices (CDS, Mp3, Internet).The main goal of this work is to study the evolution of the Spanish record market in terms of diversity from the end of the 1970s to the present, through the study of radio music hits lists and, the business structure of the phonographic and radio sectors, and phonograms top sales

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we consider the secure beamforming design for an underlay cognitive radio multiple-input singleoutput broadcast channel in the presence of multiple passive eavesdroppers. Our goal is to design a jamming noise (JN) transmit strategy to maximize the secrecy rate of the secondary system. By utilizing the zero-forcing method to eliminate the interference caused by JN to the secondary user, we study the joint optimization of the information and JN beamforming for secrecy rate maximization of the secondary system while satisfying all the interference power constraints at the primary users, as well as the per-antenna power constraint at the secondary transmitter. For an optimal beamforming design, the original problem is a nonconvex program, which can be reformulated as a convex program by applying the rank relaxation method. To this end, we prove that the rank relaxation is tight and propose a barrier interior-point method to solve the resulting saddle point problem based on a duality result. To find the global optimal solution, we transform the considered problem into an unconstrained optimization problem. We then employ Broyden-Fletcher-Goldfarb-Shanno (BFGS) method to solve the resulting unconstrained problem which helps reduce the complexity significantly, compared to conventional methods. Simulation results show the fast convergence of the proposed algorithm and substantial performance improvements over existing approaches.