977 resultados para Rabi oscillation
Resumo:
The present paper investigates the nature of the fluid flow when a spheroid is suspended in an infinitely extending elastico-viscous fluid defined by the constitutive equations given by Oldroyd or Rivlin and Ericksen, and is made to perform small amplitude oscillations along its axis. The solution of the vector wave equation is expressed in terms of the solution of the corresponding scalar wave equation, without the use of Heine's function or spheroidal wave functions. Two special cases (i) a sphere and (ii) a spheroid of small ellipticity, are studied in detail.
Resumo:
We show that under gravity the effective masses for neutrino and antineutrino are different which opens a possible window of neutrino-antineutrino oscillation even if the rest masses of the corresponding eigenstates are same. This is due to CPT violation and possible to demonstrate if the neutrino mass eigenstates are expressed as a combination of neutrino and antineutrino eigenstates, as of the neutral kaon system, with the plausible breaking of lepton number conservation. In early universe, in presence of various lepton number violating processes, this oscillation might lead to neutrino-antineutrino asymmetry which resulted baryogenesis from the B-L symmetry by electro-weak sphaleron processes. On the other hand, for Majorana neutrinos, this oscillation is expected to affect the inner edge of neutrino dominated accretion disks around a compact object by influencing the neutrino sphere which controls the accretion dynamics, and then the related type-II supernova evolution and the r-process nucleosynthesis.
Resumo:
We investigate the impact of the Indian Ocean Dipole (IOD) and El Nino and the Southern Oscillation (ENSO) on sea level variations in the North Indian Ocean during 1957-2008. Using tide-gauge and altimeter data, we show that IOD and ENSO leave characteristic signatures in the sea level anomalies (SLAs) in the Bay of Bengal. During a positive IOD event, negative SLAs are observed during April-December, with the SLAs decreasing continuously to a peak during September-November. During El Nino, negative SLAs are observed twice (April-December and November-July), with a relaxation between the two peaks. SLA signatures during negative IOD and La Nina events are much weaker. We use a linear, continuously stratified model of the Indian Ocean to simulate their sea level patterns of IOD and ENSO events. We then separate solutions into parts that correspond to specific processes: coastal alongshore winds, remote forcing from the equator via reflected Rossby waves, and direct forcing by interior winds within the bay. During pure IOD events, the SLAs are forced both from the equator and by direct wind forcing. During ENSO events, they are primarily equatorially forced, with only a minor contribution from direct wind forcing. Using a lead/lag covariance analysis between the Nino-3.4 SST index and Indian Ocean wind stress, we derive a composite wind field for a typical El Nino event: the resulting solution has two negative SLA peaks. The IOD and ENSO signatures are not evident off the west coast of India.
Resumo:
It is now well known that there is a strong association of the extremes of the Indian summer monsoon rainfall (ISMR) with the El Nio and southern oscillation (ENSO) and the Equatorial Indian Ocean Oscillation (EQUINOO), later being an east-west oscillation in convection anomaly over the equatorial Indian Ocean. So far, the index used for EQUINOO is EQWIN, which is based on the surface zonal wind over the central equatorial Indian Ocean. Since the most important attribute of EQUINOO is the oscillation in convection/precipitation, we believe that the indices based on convection or precipitation would be more appropriate. Continuous and reliable data on outgoing longwave radiation (OLR), and satellite derived precipitation are now available from 1979 onwards. Hence, in this paper, we introduce new indices for EQUINOO, based on the difference in the anomaly of OLR/precipitation between eastern and western parts of the equatorial Indian Ocean. We show that the strong association of extremes of the Indian summer monsoon with ENSO and EQUINOO is also seen when the new indices are used to represent EQUINOO.
Resumo:
Pyridoxal kinase (PdxK; EC 2.7.1.35) belongs to the phosphotransferase family of enzymes and catalyzes the conversion of the three active forms of vitamin B-6, pyridoxine, pyridoxal and pyridoxamine, to their phosphorylated forms and thereby plays a key role in pyridoxal 5 `-phosphate salvage. In the present study, pyridoxal kinase from Salmonella typhimurium was cloned and overexpressed in Escherichia coli, purified using Ni-NTA affinity chromatography and crystallized. X-ray diffraction data were collected to 2.6 angstrom resolution at 100 K. The crystal belonged to the primitive orthorhombic space group P2(1)2(1)2(1), with unitcell parameters a = 65.11, b = 72.89, c = 107.52 angstrom. The data quality obtained by routine processing was poor owing to the presence of strong diffraction rings caused by a polycrystalline material of an unknown small molecule in all oscillation images. Excluding the reflections close to powder/polycrystalline rings provided data of sufficient quality for structure determination. A preliminary structure solution has been obtained by molecular replacement with the Phaser program in the CCP4 suite using E. coli pyridoxal kinase (PDB entry 2ddm) as the phasing model. Further refinement and analysis of the structure are likely to provide valuable insights into catalysis by pyridoxal kinases.
Resumo:
Sessile droplets on a vibrating substrate are investigated focusing on axisymmetric oscillations with pinned contact line. Proper orthogonal decomposition is employed to identify the different modes of droplet shape oscillation and quantitatively assess the droplet oscillation and spectral response. We offer the first experimental evidence for the analogy of an oscillating sessile droplet with a non-linear spring mass damper system. The qualitative and quantitative agreement of amplitude response and phase response curves and limit cycles of the model dynamical system with that observed experimentally suggest that the bulk oscillations in the fundamental mode of a sessile droplet can be very well modeled by a Duffing oscillator with a hard spring, especially near the resonance. The red shift of the resonance peak with an increase in the glycerol concentration is clearly evidenced by both the experimental and predicted amplitude response curves. The influence of various operational parameters such as excitation frequency and amplitude and fluid properties on the droplet oscillation characteristics is adequately captured by the model. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The nonlinear response of a spherical shallow water model to an imposed heat source in the presence of realistic zonal mean zonal winds is investigated numerically. The solutions exhibit elongated, meridionally tilted ridges and troughs indicative of a poleward dispersion of wave activity. As the speed of the jets is increased, the equatorial Kelvin wave is unaffected but the global Rossby wave train coalesces to form a compact, amplified quadrupole structure that bears a striking resemblance to the observed upper level structure of the Madden-Julian oscillation. In the presence of strong subtropical westerly jets, the advection of planetary vorticity by the meridional flow and relative vorticity by the zonally averaged background flow conspire to create the distinctive quadrupole configuration of flanking Rossby waves.
Resumo:
In order to investigate the characteristics of water wave induced liquefaction in highly saturated sand in vertical direction, a one-dimensional model of highly saturated sand to water pressure oscillation is presented based oil the two-phase continuous media theory. The development of the effective stresses and the liquefaction thickness are analyzed. It is shown that water pressure oscillating loading affects liquefaction severely and the developing rate of liquefaction increases with the decreasing of the sand strength or the increasing of the loading strength. It is shown also that there is obvious phase lag in the sand Column. If the sand permeability is non-uniform, the pore pressure and the strain rise sharply at which the smallest permeability occurs. This solution may explain Why the fracture occurs in the sand column in some conditions.
Resumo:
An unsteady and three-dimensional model of the floating-half-zone convection on the ground is studied by the direct numerical simulation for the medium of 10 cSt silicon oil, and the influence of the liquid bridge volume on the critical applied temperature difference is especially discussed. The marginal curves for the onset of oscillation are separated into two branches related, respectively, to the slender liquid bridge and the fat liquid bridge. The oscillatory features of the floating-half-zone convection are also discussed.
Resumo:
Thermal fatigue behavior is one of the foremost considerations in the design and operation of diesel engines. It is found that thermal fatigue is closely related to the temperature field and temperature fluctuation in the structure. In this paper, spatially shaped high power laser was introduced to simulate thermal loadings on the piston. The incident Gaussian beam was transformed into concentric multi-circular beam of specific intensity distribution with the help of diffractive optical element (DOE), and the transient temperature fields in the piston similar to those under working conditions could be achieved by setting up appropriate loading cycles. Simulation tests for typical thermal loading conditions, i.e., thermal high cycle fatigue (HCF) and thermal shock (or thermal low cycle fatigue, LCF) were carried out. Several important parameters that affect the transient temperature fields and/or temperature oscillations, including controlling mode, intensity distribution of shaped laser, laser power, temporal profile of laser pulse, heating time and cooling time in one thermal cycle, etc., were investigated and discussed. The results show that as a novel method, the shaped high power laser can simulate thermal loadings on pistons efficiently, and it is helpful in the study of thermal fatigue behavior in pistons. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The onset of oscillation in the floating zone convection driven by the gradient of surface tension was experimentally studied, and discussions were concentrated on the influence of liquid bridge volume on the onset of oscillation. Distributions of critical applied temperature difference and frequency depending on the volume of the liquid bridge were obtained, and there was a gap range of liquid volume which separated the curve of marginal stability into two parts for fixed rod diameter and aspect ratio. The results imply that the volume of the liquid bridge is a sensitive critical parameter for the onset of oscillation. The implication on the instability is also discussed in the present paper.
Resumo:
The onset of oscillation in the floating zone convection driven by the gradient of surface tension was studied numerically for an unsteady and two-dimensional model, and studies were concentrated on the influence of liquid bridge volume on the onset of oscillation in comparison with the experimental results in the Paper I. The numerical results agree with the experimental ones presented in the previous paper, in which the distributions of critical applied temperature difference depending on the volume of liquid bridge and a gap range of liquid volume in marginal stability curve were obtained.
Resumo:
Free surface deformations of thermocapillary convection in a small liquid bridge of half floating-zone are studied in the present paper. The relative displacement and phase difference of free surface oscillation are experimentally studied, and the features of free surface oscillation for various applied temperature differences are obtained. It is discovered that there is a sort of surface waves having the character of small perturbation, and having a wave mode of unusually large amplitude in one corner region of the liquid bridge.
Resumo:
In this paper, we present an asymptotic method for the analysis of a class of strongly nonlinear oscillators, derive second-order approximate solutions to them expressed in terms of their amplitudes and phases, and obtain the equations governing the amplitudes and phases, by which the amplitudes of the corresponding limit cycles and their behaviour can be determined. As an example, we investigate the modified van der Pol oscillator and give the second-order approximate analytical solution of its limit cycle. The comparison with the numerical solutions shows that the two results agree well with each other.