496 resultados para RSA
Resumo:
Grid computing is an emerging technology for providing the high performance computing capability and collaboration mechanism for solving the collaborated and complex problems while using the existing resources. In this paper, a grid computing based framework is proposed for the probabilistic based power system reliability and security analysis. The suggested name of this computing grid is Reliability and Security Grid (RSA-Grid). Then the architecture of this grid is presented. A prototype system has been built for further development of grid-based services for power systems reliability and security assessment based on probabilistic techniques, which require high performance computing and large amount of memory. Preliminary results based on prototype of this grid show that RSA-Grid can provide the comprehensive assessment results for real power systems efficiently and economically.
Resumo:
Partial information leakage in deterministic public-key cryptosystems refers to a problem that arises when information about either the plaintext or the key is leaked in subtle ways. Quite a common case is where there are a small number of possible messages that may be sent. An attacker may be able to crack the scheme simply by enumerating all the possible ciphertexts. Two methods are proposed for facing the partial information leakage problem in RSA that incorporate a random element into the encrypted message to increase the number of possible ciphertexts. The resulting scheme is, effectively, an RSA-like cryptosystem which exhibits probabilistic encryption. The first method involves encrypting several similar messages with RSA and then using the Quadratic Residuosity Problem (QRP) to mark the intended one. In this way, an adversary who has correctly guessed two or more of the ciphertexts is still in doubt about which message is the intended one. The cryptographic strength of the combined system is equal to the computational difficulty of factorising a large integer; ideally, this should be feasible. The second scheme uses error-correcting codes for accommodating the random component. The plaintext is processed with an error-correcting code and deliberately corrupted before encryption. The introduced corruption lies within the error-correcting ability of the code, so as to enable the recovery of the original message. The random corruption offers a vast number of possible ciphertexts corresponding to a given plaintext; hence an attacker cannot deduce any useful information from it. The proposed systems are compared to other cryptosystems sharing similar characteristics, in terms of execution time and ciphertext size, so as to determine their practical utility. Finally, parameters which determine the characteristics of the proposed schemes are also examined.
Resumo:
This article presents the design and implementation of a trusted sensor node that provides Internet-grade security at low system cost. We describe trustedFleck, which uses a commodity Trusted Platform Module (TPM) chip to extend the capabilities of a standard wireless sensor node to provide security services such as message integrity, confidentiality, authenticity, and system integrity based on RSA public-key and XTEA-based symmetric-key cryptography. In addition trustedFleck provides secure storage of private keys and provides platform configuration registers (PCRs) to store system configurations and detect code tampering. We analyze system performance using metrics that are important for WSN applications such as computation time, memory size, energy consumption and cost. Our results show that trustedFleck significantly outperforms previous approaches (e.g., TinyECC) in terms of these metrics while providing stronger security levels. Finally, we describe a number of examples, built on trustedFleck, of symmetric key management, secure RPC, secure software update, and remote attestation.
Resumo:
Communication security for wireless sensor networks (WSN) is a challenge due to the limited computation and energy resources available at nodes. We describe the design and implementation of a public-key (PK) platform based on a standard Trusted Platform Module (TPM) chip that extends the capability of a standard node. The result facilitates message security services such as confidentiality, authenticity and integrity. We present results including computation time, energy consumption and cost.
Resumo:
Client puzzles are meant to act as a defense against denial of service (DoS) attacks by requiring a client to solve some moderately hard problem before being granted access to a resource. However, recent client puzzle difficulty definitions (Stebila and Ustaoglu, 2009; Chen et al., 2009) do not ensure that solving n puzzles is n times harder than solving one puzzle. Motivated by examples of puzzles where this is the case, we present stronger definitions of difficulty for client puzzles that are meaningful in the context of adversaries with more computational power than required to solve a single puzzle. A protocol using strong client puzzles may still not be secure against DoS attacks if the puzzles are not used in a secure manner. We describe a security model for analyzing the DoS resistance of any protocol in the context of client puzzles and give a generic technique for combining any protocol with a strong client puzzle to obtain a DoS-resistant protocol.
Resumo:
Gradual authentication is a principle proposed by Meadows as a way to tackle denial-of-service attacks on network protocols by gradually increasing the confidence in clients before the server commits resources. In this paper, we propose an efficient method that allows a defending server to authenticate its clients gradually with the help of some fast-to-verify measures. Our method integrates hash-based client puzzles along with a special class of digital signatures supporting fast verification. Our hash-based client puzzle provides finer granularity of difficulty and is proven secure in the puzzle difficulty model of Chen et al. (2009). We integrate this with the fast-verification digital signature scheme proposed by Bernstein (2000, 2008). These schemes can be up to 20 times faster for client authentication compared to RSA-based schemes. Our experimental results show that, in the Secure Sockets Layer (SSL) protocol, fast verification digital signatures can provide a 7% increase in connections per second compared to RSA signatures, and our integration of client puzzles with client authentication imposes no performance penalty on the server since puzzle verification is a part of signature verification.
Resumo:
In 2001, amendments to the Migration Act 1958 (Cth) made possible the offshore processing of protection claims. The same amendments also foreshadowed the processing of claims by ‘offshore entry persons’ in Australia according to non-statutory procedures. After disbanding offshore processing the then Rudd Labor Government commenced processing of protection claims by ‘offshore entry persons’ in Australia under the Refugee Status Assessment process (RSA). The RSA process sought to substitute well established legislative criteria for the grant of a protection visa, as interpreted by the courts, with administrative guidelines and decision-making immune from judicial review. This approach was rejected by the High Court in the cases M61 and M69. This article analyses these developments in light of Australia’s international protection obligations, as well as considering the practical obstacles that continue to confront offshore entry persons as they pursue judicial review of adverse refugee status determinations after the High Court’s decision.
Resumo:
Client puzzles are moderately-hard cryptographic problems neither easy nor impossible to solve that can be used as a counter-measure against denial of service attacks on network protocols. Puzzles based on modular exponentiation are attractive as they provide important properties such as non-parallelisability, deterministic solving time, and linear granularity. We propose an efficient client puzzle based on modular exponentiation. Our puzzle requires only a few modular multiplications for puzzle generation and verification. For a server under denial of service attack, this is a significant improvement as the best known non-parallelisable puzzle proposed by Karame and Capkun (ESORICS 2010) requires at least 2k-bit modular exponentiation, where k is a security parameter. We show that our puzzle satisfies the unforgeability and difficulty properties defined by Chen et al. (Asiacrypt 2009). We present experimental results which show that, for 1024-bit moduli, our proposed puzzle can be up to 30 times faster to verify than the Karame-Capkun puzzle and 99 times faster than the Rivest et al.'s time-lock puzzle.
Resumo:
Availability has become a primary goal of information security and is as significant as other goals, in particular, confidentiality and integrity. Maintaining availability of essential services on the public Internet is an increasingly difficult task in the presence of sophisticated attackers. Attackers may abuse limited computational resources of a service provider and thus managing computational costs is a key strategy for achieving the goal of availability. In this thesis we focus on cryptographic approaches for managing computational costs, in particular computational effort. We focus on two cryptographic techniques: computational puzzles in cryptographic protocols and secure outsourcing of cryptographic computations. This thesis contributes to the area of cryptographic protocols in the following ways. First we propose the most efficient puzzle scheme based on modular exponentiations which, unlike previous schemes of the same type, involves only a few modular multiplications for solution verification; our scheme is provably secure. We then introduce a new efficient gradual authentication protocol by integrating a puzzle into a specific signature scheme. Our software implementation results for the new authentication protocol show that our approach is more efficient and effective than the traditional RSA signature-based one and improves the DoSresilience of Secure Socket Layer (SSL) protocol, the most widely used security protocol on the Internet. Our next contributions are related to capturing a specific property that enables secure outsourcing of cryptographic tasks in partial-decryption. We formally define the property of (non-trivial) public verifiability for general encryption schemes, key encapsulation mechanisms (KEMs), and hybrid encryption schemes, encompassing public-key, identity-based, and tag-based encryption avors. We show that some generic transformations and concrete constructions enjoy this property and then present a new public-key encryption (PKE) scheme having this property and proof of security under the standard assumptions. Finally, we combine puzzles with PKE schemes for enabling delayed decryption in applications such as e-auctions and e-voting. For this we first introduce the notion of effort-release PKE (ER-PKE), encompassing the well-known timedrelease encryption and encapsulated key escrow techniques. We then present a security model for ER-PKE and a generic construction of ER-PKE complying with our security notion.
Resumo:
We describe a short signature scheme that is strongly existentially unforgeable under an adaptive chosen message attack in the standard security model. Our construction works in groups equipped with an efficient bilinear map, or, more generally, an algorithm for the Decision Diffie-Hellman problem. The security of our scheme depends on a new intractability assumption we call Strong Diffie-Hellman (SDH), by analogy to the Strong RSA assumption with which it shares many properties. Signature generation in our system is fast and the resulting signatures are as short as DSA signatures for comparable security. We give a tight reduction proving that our scheme is secure in any group in which the SDH assumption holds, without relying on the random oracle model.
Resumo:
Multiple-time signatures are digital signature schemes where the signer is able to sign a predetermined number of messages. They are interesting cryptographic primitives because they allow to solve many important cryptographic problems, and at the same time offer substantial efficiency advantage over ordinary digital signature schemes like RSA. Multiple-time signature schemes have found numerous applications, in ordinary, on-line/off-line, forward-secure signatures, and multicast/stream authentication. We propose a multiple-time signature scheme with very efficient signing and verifying. Our construction is based on a combination of one-way functions and cover-free families, and it is secure against the adaptive chosen-message attack.