609 resultados para ROMP, Olefin Metathesis, Functionalization


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chapter 1 of this thesis comprises a review of polyether polyamines, i.e., combinations of polyether scaffolds with polymers bearing multiple amino moieties. Focus is laid on controlled or living polymerization methods. Furthermore, fields in which the combination of cationic, complexing, and pH-sensitive properties of the polyamines and biocompatibility and water-solubility of polyethers promise enormous potential are presented. Applications include stimuli-responsive polymers with a lower critical solution temperature (LCST) and/or the ability to gel, preparation of shell cross-linked (SCL) micelles, gene transfection, and surface functionalization.rnIn Chapter 2, multiaminofunctional polyethers relying on the class of glycidyl amine comonomers for anionic ring-opening polymerization (AROP) are presented. In Chapter 2.1, N,N-diethyl glycidyl amine (DEGA) is introduced for copolymerization with ethylene oxide (EO). Copolymer microstructure is assessed using online 1H NMR kinetics, 13C NMR triad sequence analysis, and differential scanning calorimetry (DSC). The concurrent copolymerization of EO and DEGA is found to result in macromolecules with a gradient structure. The LCSTs of the resulting copolymers can be tailored by adjusting DEGA fraction or pH value of the environment. Quaternization of the amino moieties by methylation results in polyelectrolytes. Block copolymers are used for PEGylated gold nanoparticle formation. Chapter 2.2 deals with a glycidyl amine monomer with a removable protecting group at the amino moiety, for liberation of primary amines at the polyether backbone, which is N,N-diallyl glycidyl amine (DAGA). Its allyl groups are able to withstand the harsh basic conditions of AROP, but can be cleaved homogeneously after polymerization. Gradient as well as block copolymers poly(ethylene glycol)-PDAGA (PEG-PDAGA) are obtained. They are analyzed regarding their microstructure, LCST behavior, and cleavage of the protecting groups. rnChapter 3 describes applications of multi(amino)functional polyethers for functionalization of inorganic surfaces. In Chapter 3.1, they are combined with an acetal-protected catechol initiator, leading to well-defined PEG and heteromultifunctional PEG analogues. After deprotection, multifunctional PEG ligands capable of attaching to a variety of metal oxide surfaces are obtained. In a cooperative project with the Department of Inorganic and Analytical Chemistry, JGU Mainz, their potential is demonstrated on MnO nanoparticles, which are promising candidates as T1 contrast agents in magnetic resonance imaging. The MnO nanoparticles are solubilized in aqueous solution upon ligand exchange. In Chapter 3.2, a concept for passivation and functionalization of glass surfaces towards gold nanorods is developed. Quaternized mPEG-b-PqDEGA diblock copolymers are attached to negatively charged glass surfaces via the cationic PqDEGA blocks. The PEG blocks are able to suppress gold nanorod adsorption on the glass in the flow cell, analyzed by dark field microscopy.rnChapter 4 highlights a straightforward approach to poly(ethylene glycol) macrocycles. Starting from commercially available bishydroxy-PEG, cyclic polymers are available by perallylation and ring-closing metathesis in presence of Grubbs’ catalyst. Purification of cyclic PEG is carried out using α-cyclodextrin. This cyclic sugar derivative forms inclusion complexes with remaining unreacted linear PEG in aqueous solution. Simple filtration leads to pure macrocycles, as evidenced by SEC and MALDI-ToF mass spectrometry. Cyclic polymers from biocompatible precursors are interesting materials regarding their increased blood circulation time compared to their linear counterparts.rnIn the Appendix, A.1, a study of the temperature-dependent water-solubility of polyether copolymers is presented. Macroscopic cloud points, determined by turbidimetry, are compared with microscopic aggregation phenomena, monitored by continuous wave electron paramagnetic resonance (CW EPR) spectroscopy in presence of the amphiphilic spin probe and model drug (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO). These thermoresponsive polymers are promising candidates for molecular transport applications. The same techniques are applied in Chapter A.2 to explore the pH-dependence of the cloud points of PEG-PDEGA copolymers in further detail. It is shown that the introduction of amino moieties at the PEG backbone allows for precise manipulation of complex phase transition modes. In Chapter A.3, multi-hydroxyfunctional polysilanes are presented. They are obtained via copolymerization of the acetal-protected dichloro(isopropylidene glyceryl propyl ether)methylsilane monomer. The hydroxyl groups are liberated through acidic work-up, yielding versatile access to new multifunctional polysilanes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The widespread dietary plant sesquiterpene hydrocarbon β-caryophyllene (1) is a CB2 cannabinoid receptor-specific agonist showing anti-inflammatory and analgesic effects in vivo. Structural insights into the pharmacophore of this hydrocarbon, which lacks functional groups other than double bonds, are missing. A structure-activity study provided evidence for the existence of a well-defined sesquiterpene hydrocarbon binding site in CB2 receptors, highlighting its exquisite sensitivity to modifications of the strained endocyclic double bond of 1. While most changes on this element were detrimental for activity, ring-opening cross metathesis of 1 with ethyl acrylate followed by amide functionalization generated a series of new monocyclic amides (11a, 11b, 11c) that not only retained the CB2 receptor functional agonism of 1 but also reversibly inhibited fatty acid amide hydrolase (FAAH), the major endocannabinoid degrading enzyme, without affecting monoacylglycerol lipase (MAGL) and α,β hydrolases 6 and 12. Intriguingly, further modification of this monocyclic scaffold generated the FAAH- and endocannabinoid substrate-specific cyclooxygenase-2 (COX-2) dual inhibitors 11e and 11f, which are probes with a novel pharmacological profile. Our study shows that by removing the conformational constraints induced by the medium-sized ring and by introducing functional groups in the sesquiterpene hydrocarbon 1, a new scaffold with pronounced polypharmacological features within the endocannabinoid system could be generated. The structural and functional repertoire of cannabimimetics and their yet poorly understood intrinsic promiscuity may be exploited to generate novel probes and ultimately more effective drugs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research described herein relates to studies into the Aqueous Ring-Opening Metathesis Polymerisation (ROMP) of bicyclic monomers using ruthenium complex catalysts. Two monomers were synthesised for the purpose of these studies, namely exo, exo-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid (7-oxanorbornenedicarboxylic acid) and exo, exo-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid (norbornene dicarboxylic acid). A number of ruthenium complexes were synthesised, amongst them a novel complex containing the water soluble phosphine ligand trist(hydroxymethyl)phosphine P(CH2OH)3. Its synthesis and characterisation are described and its physical properties compared and contrasted to analogous compounds of platinum and palladium. Its peculiar properties are ascribed to a trans-placement of the phosphine ligands. Dilatometry was investigated as a technique for the acquisition of kinetic data from aqueous metathesis reactions. For the attempted polymerisation of 7-oxanorbonenedicarboxylic acid the results are explained in terms of a reverse Diels-Alder reaction of the monomer. The reaction between Ru(CO)Cl2(H2O) and 7-oxanorbonenedicarboxylic acid was monitored using UV/Vis spectrometry and kinetic data retrieved. The data are explained in terms of a two stage reaction consisting of consecutive first order processes.The reaction between 7-oxanorbornenedicarboxylic acid and Ru(CO)Cl2(H2O) or Ru(P(CH2OH)3)3Cl2 was found to produce fumaric acid as one of the major products. This reaction is previously unreported in the literature and a mechanism is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cubane is a peculiar cube-shaped alkane molecule with a rigid, regular structure. This makes it a good scaffold, i.e. a molecular platform to which the substituents are arranged in a specific and fixed orientation. Moreover, cubane has a body diagonal of 2.72 Å, very similar to the distance across the benzene ring, i.e. 2.79 Å. Thus, it would be possible to use cubane as a scaffold in medicinal and material chemistry as a benzene isostere 1,2. This could lead to advantages in terms of solubility and toxicity and could provide novel properties. For this purpose, the possibility of performing “modern organic chemistry” on the cubane scaffold has to be studied. This project was entirely carried out in the framework of the Erasmus+ mobility programme at the Trinity College (Dublin, IRL) under the supervision of prof. M. O. Senge. The main goal of this project was to widen the knowledge on cubane chemistry. In particular, it was decided to test reactions that were never applied to the scaffold before, such as metathesis of 4-iodo-1-vinylcubane and Stetter reaction of 1-iodocubane-4-carboxaldehyde. These two molecules were synthesized in 10 and 9 steps respectively from commercially available cyclopentanone, following a known procedure. Unfortunately, metathesis with different olefins, such as styrene, α,β unsaturated compounds and linear α-olefins failed under different conditions, highlighting cubane behaves as a Type IV, challenging olefin under metathesis conditions. Even the employment of a specific catalyst for hindered olefins failed in the cross-coupling with linear α-olefins. On the other hand, two new molecules were synthesized via Stetter reaction and benzoin condensation respectively. Even if the majority of the reactions were not successful, this work can be seen as an inspiration for further investigation on cubane chemistry, as new questions were raised and new opportunities were envisioned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple protocol for the Pd(OAc)(2)-catalyzed cross-coupling reaction of 1-benzoyl-(2S)-isopropyl-5-iodo-2,3-dihydro-4(H)-pyrimidin-4-ones with potassium aryltrifluoroborates was developed. The reaction is performed at 110 degrees C with a ligand-free catalyst. In all cases, complete conversion of the 1-benzoyl-(2S)-isopropyl-5-iodo-2,3-dihydro-4(H)-pyrimidin-4-ones and aryltrifluoroborates into the C-C coupling products was observed within 30-360 min. It is noteworthy that a large variety of groups present in the potassium aryltrifluoroborates (-CF(3), -OMe, -SEt, -CN, -CHO, -Cl, -Cbz, -NCbz, -OH, -CO(2)H) could be tolerated. Hydrogenation of the endocyclic double bonds in the Suzuki-Miyaura products followed by acid hydrolysis afforded highly enantioenriched alpha-aryl-substituted beta-amino acids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A survey of the scorpionate tris(pyrazolyl)methane complexes synthesized by our group is presented, as well as their structural features and catalytic applications toward the funtionalization of linear and cyclic light alkanes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Engineering Sciences and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep-eutectic solvents (DES) are considered novel renewable and biodegradable solvents, with a cheap and easy synthesis, without waste production. Later it was discovered a new subclass of DES that even can be biocompatible, since their synthesis uses primary metabolites such as amino acids, organic acids and sugars, from organisms. This subclass was named natural deep-eutectic solvents (NADES). Due to their properties it was tried to study the interaction between these solvents and biopolymers, in order to produce functionalized fibers for biomedical applications. In this way, fibers were produced by using the electrospinning technique. However, it was first necessary to study some physical properties of NADES, as well as the influence of water in their properties. It has been concluded that the water has a high influence on NADES properties, which can be seen on the results obtained from the rheology and viscosity studies. The fluid dynamics had changed, as well as the viscosity. Afterwards, it was tested the viability of using a starch blend. First it was tested the dissolution of these biopolymers into NADES, in order to study the viability of their application in electrospinning. However the results obtained were not satisfactory, since the starch polymers studied did not presented any dissolution in any NADES, or even in organic solvents. In this way it was changed the approach, and it was used other biocompatible polymers. Poly(ethylene oxide), poly(vinyl alcohol) and gelatin were the others biopolymers tested for the electrospinning, with NADES. All polymers show good results, since it was possible to obtain fibers. However for gelatin it was used only eutectic mixtures, containing active pharmaceutical ingredients (API’s), instead of NADES. For this case it was used mandelic acid (antimicrobial properties), choline chloride, ibuprofen (anti-inflammatory properties) and menthol (analgesic properties). The polymers and the produced fibers were characterized by scanning electron microscope (SEM), Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). With the help of these techniques it was possible to conclude that it was possible to encapsulate NADES within the fibers. Rheology it was also study for poly(ethylene oxide) and poly(vinyl alcohol), in a way to understand the influence of polymer concentration, on the electrospinning technique. For the gelatin, among the characterization techniques, it was also performed cytotoxicity and drug release studies. The gelatin membranes did not show any toxicity for the cells, since their viability was maintained. Regarding the controlled release profile experiment no conclusion could be drawn from the experiments, due to the rapid and complete dissolution of the gelatin in the buffer solution. However it was possible to quantify the mixture of choline chloride with mandelic acid, allowing thus to complete, and confirm, the information already obtained for the others characterization technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia de Tecidos, Medicina Regenerativa e Células Estaminais.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commercial stents, especially metallic ones, present several disadvantages, and this gives rise to the necessity of producing or coating stents with different materials, like natural polymers, in order to improve their biocompatibility and minimize the disadvantages of metallic ones. This review paper discusses some applications of natural-based polymers in stents, namely polylactic acid (PLA) for stent development and chitosan for biocompatible coatings of stents . Furthermore, some effective stent functionalization techniques will be discussed, namely Layer by Layer (LBL) technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Biofísica e Bionanossistemas

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone substitute materials allowing trans-scaffold migration and in-scaffold survival of human bone-derived cells are mandatory for development of cell-engineered permanent implants to repair bone defects. In this study, we evaluated the influence on human bone-derived cells of the material composition and microstructure of foam scaffolds of calcium aluminate. The scaffolds were prepared using a direct foaming method allowing wide-range tailoring of the microstructure for pore size and pore openings. Human fetal osteoblasts (osteo-progenitors) attached to the scaffolds, migrated across the entire bioceramic depending on the scaffold pore size, colonized, and survived in the porous material for at least 6 weeks. The long-term biocompatibility of the scaffold material for human bone-derived cells was evidenced by in-scaffold determination of cell metabolic activity using a modified MTT assay, a repeated WST-1 assay, and scanning electron microscopy. Finally, we demonstrated that the osteo-progenitors can be covalently bound to the scaffolds using biocompatible click chemistry, thus enhancing the rapid adhesion of the cells to the scaffolds. Therefore, the different microstructures of the foams influenced the migratory potential of the cells, but not cell viability. Scaffolds allow covalent biocompatible chemical binding of the cells to the materials, either localized or widespread integration of the scaffolds for cell-engineered implants.