726 resultados para ROC
Resumo:
Objective: The aim of the study is to examine the distribution of integrated covariate and its association with blood pressure (BP) among children in Anhui province, China, and assess the predictive value of integrated covariate to children hypertension. Methods: A total of 2,828 subjects (1,588 male and 1,240 female) aged 7-17 years participated in this study. Height, weight, waistline, hipline and BP of all subjects were measured, obesity and overweight were defined by an international standard, specifying the measurement, the reference population, and the age and sex specific cut off points. High BP status was defined as systolic blood pressure (SBP) and/or diastolic blood pressure (DBP) > 95th percentile for age and gender. Results: Our results revealed that the prevalence of children hypertension was 11.03%, the SBP and DBP of obesity group were significantly higher than that of normal group. Anthropometric obesity indices such as body mass index (BMI) were positively correlated with SBP and DBP. Integrated covariate had a better performance than the single covariate in the receiver-operating characteristic (ROC) curve, the cut-off value; the sensitivity and the specificity of the integrated covariate were 0.112, 0.577, 0.683, respectively. Conclusion: Integrated covariate is a simple and effective anthropometric index to identify childhood hypertension.
Resumo:
Aims – To develop local contemporary coefficients for the Trauma Injury Severity Score in New Zealand, TRISS(NZ), and to evaluate their performance at predicting survival against the original TRISS coefficients. Methods – Retrospective cohort study of adults who sustained a serious traumatic injury, and who survived until presentation at Auckland City, Middlemore, Waikato, or North Shore Hospitals between 2002 and 2006. Coefficients were estimated using ordinary and multilevel mixed-effects logistic regression models. Results – 1735 eligible patients were identified, 1672 (96%) injured from a blunt mechanism and 63 (4%) from a penetrating mechanism. For blunt mechanism trauma, 1250 (75%) were male and average age was 38 years (range: 15-94 years). TRISS information was available for 1565 patients of whom 204 (13%) died. Area under the Receiver Operating Characteristic (ROC) curves was 0.901 (95%CI: 0.879-0.923) for the TRISS(NZ) model and 0.890 (95% CI: 0.866-0.913) for TRISS (P<0.001). Insufficient data were available to determine coefficients for penetrating mechanism TRISS(NZ) models. Conclusions – Both TRISS models accurately predicted survival for blunt mechanism trauma. However, TRISS(NZ) coefficients were statistically superior to TRISS coefficients. A strong case exists for replacing TRISS coefficients in the New Zealand benchmarking software with these updated TRISS(NZ) estimates.
Resumo:
It is important to detect and treat malnutrition in hospital patients so as to improve clinical outcome and reduce hospital stay. The aim of this study was to develop and validate a nutrition screening tool with a simple and quick scoring system for acute hospital patients in Singapore. In this study, 818 newly admitted patients aged above 18 years old were screened using five parameters that contribute to the risk of malnutrition. A dietitian blinded to the nutrition screening score assessed the same patients using the reference standard, Subjective Global Assessment (SGA) within 48 hours. The sensitivity and specificity were established using the Receiver Operator Characteristics (ROC) curve and the best cutoff scores determined. The nutrition parameter with the largest Area Under the ROC Curve (AUC) was chosen as the final screening tool, which was named 3-Minute Nutrition Screening (3-MinNS). The combination of the parameters weight loss, intake and muscle wastage (3-MinNS), gave the largest AUC when compared with SGA. Using 3-MinNS, the best cutoff point to identify malnourished patients is three (sensitivity 86%, specificity 83%). The cutoff score to identify subjects at risk of severe malnutrition is five (sensitivity 93%, specificity 86%). 3-Minute Nutrition Screening is a valid, simple and rapid tool to identify patients at risk of malnutrition in Singapore acute hospital patients. It is able to differentiate patients at risk of moderate malnutrition and severe malnutrition for prioritization and management purposes.
Resumo:
Protein-energy wasting (PEW) is commonly seen in patients with chronic kidney disease (CKD). The condition is characterised by chronic, systemic low-grade inflammation which affects nutritional status by a variety of mechanisms including reducing appetite and food intake and increasing muscle catabolism. PEW is linked with co-morbidities such as cardiovascular disease, and is associated with lower quality of life, increased hospitalisations and a 6-fold increase in risk of death1. Significant gender differences have been found in the severity and effects of several markers of PEW. There have been limited studies testing the ability of anti-inflammatory agents or nutritional interventions to reduce the effects of PEW in dialysis patients. This thesis makes a significant contribution to the understanding of PEW in dialysis patients. It advances understanding of measurement techniques for two of the key components, appetite and inflammation, and explores the effect of fish oil, an anti-inflammatory agent, on markers of PEW in dialysis patients. The first part of the thesis consists of two methodological studies conducted using baseline data. The first study aims to validate retrospective ratings of hunger, desire to eat and fullness on visual analog scales (VAS) (paper and pen and electronic) as a new method of measuring appetite in dialysis patients. The second methodological study aims to assess the ability of a variety of methods available in routine practice to detect the presence of inflammation. The second part of the thesis aims to explore the effect of 12 weeks supplementation with 2g per day of Eicosapentaenoic Acid (EPA), a longchain fatty acid found in fish oil, on markers of PEW. A combination of biomarkers and psychomarkers of appetite and inflammation are the main outcomes being explored, with nutritional status, dietary intake and quality of life included as secondary outcomes. A lead in phase of 3 months prior to baseline was used so that each person acts as their own historical control. The study also examines whether there are gender differences in response to the treatment. Being an exploratory study, an important part of the work is to test the feasibility of the intervention, thus the level of adherence and factors associated with adherence are also presented. The studies were conducted at the hemodialysis unit of the Wesley Hospital. Participants met the following criteria: adult, stage 5 CKD on hemodialysis for at least 3 months, not expected to receive a transplant or switch to another dialysis modality during the study, absence of intellectual impairment or mental illness impairing ability to follow instructions or complete the intervention. A range of intermediate, clinical and patient-centred outcome measures were collected at baseline and 12 weeks. Inflammation was measured using five biomarkers: c-reactive protein (CRP), interleukin-6 (IL6), intercellular adhesion molecule (sICAM-1), vascular cell adhesion molecule (sVCAM-1) and white cell count (WCC). Subjective appetite was measured using the first question from the Appetite and Dietary Assessment (ADAT) tool and VAS for measurements of hunger, desire to eat and fullness. A novel feature of the study was the assessment of the appetite peptides leptin, ghrelin and peptide YY as biomarkers of appetite. Nutritional status/inflammation was assessed using the Malnutrition-Inflammation Score (MIS) and the Patient-Generated Subjective Global Assessment (PG-SGA). Dietary intake was measured using 3-day records. Quality of life was measured using the Kidney Disease Quality of Life Short Form version 1.3 (KDQOL-SF™ v1.3 © RAND University), which combines the Short-Form 36 (SF36) with a kidney-disease specific module2. A smaller range of these variables was available for analysis during the control phase (CRP, ADAT, dietary intake and nutritional status). Statistical analysis was carried out using SPSS version 14 (SPSS Inc, Chicago IL, USA). Analysis of the first part of the thesis involved descriptive and bivariate statistics, as well as Bland-Altman plots to assess agreement between methods, and sensitivity analysis/ROC curves to test the ability of methods to predict the presence of inflammation. The unadjusted (paired ttests) and adjusted (linear mixed model) change over time is presented for the main outcome variables of inflammation and appetite. Results are shown for the whole group followed by analyses according to gender and adherence to treatment. Due to the exploratory nature of the study, trends and clinical significance were considered as important as statistical significance. Twenty-eight patients (mean age 61±17y, 50% male, dialysis vintage 19.5 (4- 101) months) underwent baseline assessment. Seven out of 28 patients (25%) reported sub-optimal appetite (self-reported as fair, poor or very poor) despite all being well nourished (100% SGA A). Using the VAS, ratings of hunger, but not desire to eat or fullness, were significantly (p<0.05) associated with a range of relevant clinical variables including age (r=-0.376), comorbidities (r=-0.380) nutritional status (PG-SGA score, r=-0.451), inflammatory markers (CRP r=-0.383; sICAM-1 r=-0.387) and seven domains of quality of life. Patients expressed a preference for the paper and pen method of administering VAS. None of the tools (appetite, MIS, PG-SGA, albumin or iron) showed an acceptable ability to detect patients who are inflamed. It is recommended that CRP should be tested more frequently as a matter of course rather than seeking alternative methods of measuring inflammation. 27 patients completed the 12 week intervention. 20 patients were considered adherent based on changes in % plasma EPA, which rose from 1.3 (0.94)% to 5.2 (1.1)%, p<0.001, in this group. The major barriers to adherence were forgetting to take the tablets as well as their size. At 12 weeks, inflammatory markers remained steady apart from the white cell count which decreased (7.6(2.5) vs 7.0(2.2) x109/L, p=0.058) and sVCAM-1 which increased (1685(654) vs 2249(925) ng/mL, p=0.001). Subjective appetite using VAS increased (51mm to 57mm, +12%) and there was a trend towards reduction in peptide YY (660(31) vs 600(30) pg/mL, p=0.078). There were some gender differences apparent, with the following adjusted change between baseline and week 12: CRP (males -3% vs females +17%, p=0.19), IL6 (males +17% vs females +48%, p=0.77), sICAM-1 (males -5% vs females +11%, p=0.07), sVCAM-1 (males +54% vs females +19%, p=0.08) and hunger ratings (males 20% vs females -5%, p=0.18). On balance, males experienced a maintainence or reduction in three inflammatory markers and an improvement in hunger ratings, and therefore appeared to have responded better to the intervention. Compared to those who didn’t adhere, adherent patients maintained weight (mean(SE) change: +0.5(1.6) vs - 0.8(1.2) kg, p=0.052) and fat-free mass (-0.1 (1.6) vs -1.8 (1.8) kg, p=0.045). There was no difference in change between the intervention and control phase for CRP, appetite, nutritional status or dietary intake. The thesis makes a significant contribution to the evidence base for understanding of PEW in dialysis patients. It has advanced knowledge of methods of assessing inflammation and appetite. Retrospective ratings of hunger on a VAS appear to be a valid method of assessing appetite although samples which include patients with very poor appetite are required to confirm this. Supplementation with fish oil appeared to improve subjective appetite and dampen the inflammatory response. The effectiveness of the intervention is influenced by gender and adherence. Males appear to be more responsive to the primary outcome variables than females, and the quality of response is improved with better adherence. These results provide evidence to support future interventions aimed at reducing the effects of PEW in dialysis patients.
Resumo:
Gabor representations have been widely used in facial analysis (face recognition, face detection and facial expression detection) due to their biological relevance and computational properties. Two popular Gabor representations used in literature are: 1) Log-Gabor and 2) Gabor energy filters. Even though these representations are somewhat similar, they also have distinct differences as the Log-Gabor filters mimic the simple cells in the visual cortex while the Gabor energy filters emulate the complex cells, which causes subtle differences in the responses. In this paper, we analyze the difference between these two Gabor representations and quantify these differences on the task of facial action unit (AU) detection. In our experiments conducted on the Cohn-Kanade dataset, we report an average area underneath the ROC curve (A`) of 92.60% across 17 AUs for the Gabor energy filters, while the Log-Gabor representation achieved an average A` of 96.11%. This result suggests that small spatial differences that the Log-Gabor filters pick up on are more useful for AU detection than the differences in contours and edges that the Gabor energy filters extract.
Resumo:
The high morbidity and mortality associated with atherosclerotic coronary vascular disease (CVD) and its complications are being lessened by the increased knowledge of risk factors, effective preventative measures and proven therapeutic interventions. However, significant CVD morbidity remains and sudden cardiac death continues to be a presenting feature for some subsequently diagnosed with CVD. Coronary vascular disease is also the leading cause of anaesthesia related complications. Stress electrocardiography/exercise testing is predictive of 10 year risk of CVD events and the cardiovascular variables used to score this test are monitored peri-operatively. Similar physiological time-series datasets are being subjected to data mining methods for the prediction of medical diagnoses and outcomes. This study aims to find predictors of CVD using anaesthesia time-series data and patient risk factor data. Several pre-processing and predictive data mining methods are applied to this data. Physiological time-series data related to anaesthetic procedures are subjected to pre-processing methods for removal of outliers, calculation of moving averages as well as data summarisation and data abstraction methods. Feature selection methods of both wrapper and filter types are applied to derived physiological time-series variable sets alone and to the same variables combined with risk factor variables. The ability of these methods to identify subsets of highly correlated but non-redundant variables is assessed. The major dataset is derived from the entire anaesthesia population and subsets of this population are considered to be at increased anaesthesia risk based on their need for more intensive monitoring (invasive haemodynamic monitoring and additional ECG leads). Because of the unbalanced class distribution in the data, majority class under-sampling and Kappa statistic together with misclassification rate and area under the ROC curve (AUC) are used for evaluation of models generated using different prediction algorithms. The performance based on models derived from feature reduced datasets reveal the filter method, Cfs subset evaluation, to be most consistently effective although Consistency derived subsets tended to slightly increased accuracy but markedly increased complexity. The use of misclassification rate (MR) for model performance evaluation is influenced by class distribution. This could be eliminated by consideration of the AUC or Kappa statistic as well by evaluation of subsets with under-sampled majority class. The noise and outlier removal pre-processing methods produced models with MR ranging from 10.69 to 12.62 with the lowest value being for data from which both outliers and noise were removed (MR 10.69). For the raw time-series dataset, MR is 12.34. Feature selection results in reduction in MR to 9.8 to 10.16 with time segmented summary data (dataset F) MR being 9.8 and raw time-series summary data (dataset A) being 9.92. However, for all time-series only based datasets, the complexity is high. For most pre-processing methods, Cfs could identify a subset of correlated and non-redundant variables from the time-series alone datasets but models derived from these subsets are of one leaf only. MR values are consistent with class distribution in the subset folds evaluated in the n-cross validation method. For models based on Cfs selected time-series derived and risk factor (RF) variables, the MR ranges from 8.83 to 10.36 with dataset RF_A (raw time-series data and RF) being 8.85 and dataset RF_F (time segmented time-series variables and RF) being 9.09. The models based on counts of outliers and counts of data points outside normal range (Dataset RF_E) and derived variables based on time series transformed using Symbolic Aggregate Approximation (SAX) with associated time-series pattern cluster membership (Dataset RF_ G) perform the least well with MR of 10.25 and 10.36 respectively. For coronary vascular disease prediction, nearest neighbour (NNge) and the support vector machine based method, SMO, have the highest MR of 10.1 and 10.28 while logistic regression (LR) and the decision tree (DT) method, J48, have MR of 8.85 and 9.0 respectively. DT rules are most comprehensible and clinically relevant. The predictive accuracy increase achieved by addition of risk factor variables to time-series variable based models is significant. The addition of time-series derived variables to models based on risk factor variables alone is associated with a trend to improved performance. Data mining of feature reduced, anaesthesia time-series variables together with risk factor variables can produce compact and moderately accurate models able to predict coronary vascular disease. Decision tree analysis of time-series data combined with risk factor variables yields rules which are more accurate than models based on time-series data alone. The limited additional value provided by electrocardiographic variables when compared to use of risk factors alone is similar to recent suggestions that exercise electrocardiography (exECG) under standardised conditions has limited additional diagnostic value over risk factor analysis and symptom pattern. The effect of the pre-processing used in this study had limited effect when time-series variables and risk factor variables are used as model input. In the absence of risk factor input, the use of time-series variables after outlier removal and time series variables based on physiological variable values’ being outside the accepted normal range is associated with some improvement in model performance.
Resumo:
PURPOSE. To measure tear film surface quality in healthy and dry eye subjects using three noninvasive techniques of tear film quality assessment and to establish the ability of these noninvasive techniques to predict dry eye. METHODS. Thirty four subjects participated in the study, and were classified as dry eye or normal, based on standard clinical assessments. Three non-invasive techniques were applied for measurement of tear film surface quality: dynamic-area high-speed videokeratoscopy (HSV), wavefront sensing (DWS) and lateral shearing interferometry (LSI). The measurements were performed in both natural blinking conditions (NBC) and in suppressed blinking conditions (SBC). RESULTS. In order to investigate the capability of each method to discriminate dry eye subjects from normal subjects, the receiver operating curve (ROC) was calculated and then the area under the curve (AUC) was extracted. The best result was obtained for the LSI technique (AUC=0.80 in SBC and AUC=0.73 in NBC), which was followed by HSV (AUC=0.72 in SBC and AUC=0.71 in NBC). The best result for DWS was AUC=0.64 obtained for changes in vertical coma in suppressed blinking conditions, while for normal blinking conditions the results were poorer. CONCLUSIONS. Non-invasive techniques of tear film surface assessment can be used for predicting dry eye and this can be achieved in natural blinking as well as suppressed blinking conditions. In this study, LSI showed the best detection performance, closely followed by the dynamic-area HSV. The wavefront sensing technique was less powerful, particularly in natural blinking conditions.
Resumo:
Hazard perception in driving is the one of the few driving-specific skills associated with crash involvement. However, this relationship has only been examined in studies where the majority of individuals were younger than 65. We present the first data revealing an association between hazard perception and self-reported crash involvement in drivers aged 65 and over. In a sample of 271 drivers, we found that individuals whose mean response time to traffic hazards was slower than 6.68 seconds (the ROC-curve derived pass mark for the test) were 2.32 times (95% CI 1.46, 3.22) more likely to have been involved in a self-reported crash within the previous five years than those with faster response times. This likelihood ratio became 2.37 (95% CI 1.49, 3.28) when driving exposure was controlled for. As a comparison, individuals who failed a test of useful field of view were 2.70 (95% CI 1.44, 4.44) times more likely to crash than those who passed. The hazard perception test and the useful field of view measure accounted for separate variance in crash involvement. These findings indicate that hazard perception testing and training could be potentially useful for road safety interventions for this age group.
Resumo:
The tear film plays an important role preserving the health of the ocular surface and maintaining the optimal refractive power of the cornea. Moreover dry eye syndrome is one of the most commonly reported eye health problems. This syndrome is caused by abnormalities in the properties of the tear film. Current clinical tools to assess the tear film properties have shown certain limitations. The traditional invasive methods for the assessment of tear film quality, which are used by most clinicians, have been criticized for the lack of reliability and/or repeatability. A range of non-invasive methods of tear assessment have been investigated, but also present limitations. Hence no “gold standard” test is currently available to assess the tear film integrity. Therefore, improving techniques for the assessment of the tear film quality is of clinical significance and the main motivation for the work described in this thesis. In this study the tear film surface quality (TFSQ) changes were investigated by means of high-speed videokeratoscopy (HSV). In this technique, a set of concentric rings formed in an illuminated cone or a bowl is projected on the anterior cornea and their reflection from the ocular surface imaged on a charge-coupled device (CCD). The reflection of the light is produced in the outer most layer of the cornea, the tear film. Hence, when the tear film is smooth the reflected image presents a well structure pattern. In contrast, when the tear film surface presents irregularities, the pattern also becomes irregular due to the light scatter and deviation of the reflected light. The videokeratoscope provides an estimate of the corneal topography associated with each Placido disk image. Topographical estimates, which have been used in the past to quantify tear film changes, may not always be suitable for the evaluation of all the dynamic phases of the tear film. However the Placido disk image itself, which contains the reflected pattern, may be more appropriate to assess the tear film dynamics. A set of novel routines have been purposely developed to quantify the changes of the reflected pattern and to extract a time series estimate of the TFSQ from the video recording. The routine extracts from each frame of the video recording a maximized area of analysis. In this area a metric of the TFSQ is calculated. Initially two metrics based on the Gabor filter and Gaussian gradient-based techniques, were used to quantify the consistency of the pattern’s local orientation as a metric of TFSQ. These metrics have helped to demonstrate the applicability of HSV to assess the tear film, and the influence of contact lens wear on TFSQ. The results suggest that the dynamic-area analysis method of HSV was able to distinguish and quantify the subtle, but systematic degradation of tear film surface quality in the inter-blink interval in contact lens wear. It was also able to clearly show a difference between bare eye and contact lens wearing conditions. Thus, the HSV method appears to be a useful technique for quantitatively investigating the effects of contact lens wear on the TFSQ. Subsequently a larger clinical study was conducted to perform a comparison between HSV and two other non-invasive techniques, lateral shearing interferometry (LSI) and dynamic wavefront sensing (DWS). Of these non-invasive techniques, the HSV appeared to be the most precise method for measuring TFSQ, by virtue of its lower coefficient of variation. While the LSI appears to be the most sensitive method for analyzing the tear build-up time (TBUT). The capability of each of the non-invasive methods to discriminate dry eye from normal subjects was also investigated. The receiver operating characteristic (ROC) curves were calculated to assess the ability of each method to predict dry eye syndrome. The LSI technique gave the best results under both natural blinking conditions and in suppressed blinking conditions, which was closely followed by HSV. The DWS did not perform as well as LSI or HSV. The main limitation of the HSV technique, which was identified during the former clinical study, was the lack of the sensitivity to quantify the build-up/formation phase of the tear film cycle. For that reason an extra metric based on image transformation and block processing was proposed. In this metric, the area of analysis was transformed from Cartesian to Polar coordinates, converting the concentric circles pattern into a quasi-straight lines image in which a block statistics value was extracted. This metric has shown better sensitivity under low pattern disturbance as well as has improved the performance of the ROC curves. Additionally a theoretical study, based on ray-tracing techniques and topographical models of the tear film, was proposed to fully comprehend the HSV measurement and the instrument’s potential limitations. Of special interested was the assessment of the instrument’s sensitivity under subtle topographic changes. The theoretical simulations have helped to provide some understanding on the tear film dynamics, for instance the model extracted for the build-up phase has helped to provide some insight into the dynamics during this initial phase. Finally some aspects of the mathematical modeling of TFSQ time series have been reported in this thesis. Over the years, different functions have been used to model the time series as well as to extract the key clinical parameters (i.e., timing). Unfortunately those techniques to model the tear film time series do not simultaneously consider the underlying physiological mechanism and the parameter extraction methods. A set of guidelines are proposed to meet both criteria. Special attention was given to a commonly used fit, the polynomial function, and considerations to select the appropriate model order to ensure the true derivative of the signal is accurately represented. The work described in this thesis has shown the potential of using high-speed videokeratoscopy to assess tear film surface quality. A set of novel image and signal processing techniques have been proposed to quantify different aspects of the tear film assessment, analysis and modeling. The dynamic-area HSV has shown good performance in a broad range of conditions (i.e., contact lens, normal and dry eye subjects). As a result, this technique could be a useful clinical tool to assess tear film surface quality in the future.
Resumo:
Epilepsy is characterized by the spontaneous and seemingly unforeseeable occurrence of seizures, during which the perception or behavior of patients is disturbed. An automatic system that detects seizure onsets would allow patients or the people near them to take appropriate precautions, and could provide more insight into this phenomenon. Various methods have been proposed to predict the onset of seizures based on EEG recordings. The use of nonlinear features motivated by the higher order spectra (HOS) has been reported to be a promising approach to differentiate between normal, background (pre-ictal) and epileptic EEG signals. In this work, we made a comparative study of the performance of Gaussian mixture model (GMM) and Support Vector Machine (SVM) classifiers using the features derived from HOS and from the power spectrum. Results show that the selected HOS based features achieve 93.11% classification accuracy compared to 88.78% with features derived from the power spectrum for a GMM classifier. The SVM classifier achieves an improvement from 86.89% with features based on the power spectrum to 92.56% with features based on the bispectrum.
Resumo:
Abstract OBJECTIVE: To assess the psychometric properties and health correlates of the Geriatric Anxiety Inventory (GAI) in a cohort of Australian community-residing older women. METHOD: Cross-sectional study of a population-based cohort of women aged 60 years and over (N = 286). RESULTS: The GAI exhibited sound internal consistency and demonstrated good concurrent validity against the state half of the Spielberger State Trait Anxiety Inventory and the neuroticism domain of the NEO five-factor inventory. GAI score was significantly associated with self-reported sleep difficulties and perceived memory impairment, but not with age or cognitive function. Women with current DSM-IV Generalized Anxiety Disorder (GAD) had significantly higher GAI scores than women without such a history. In this cohort, the optimal cut-point to detect current GAD was 8/9. Although the GAI was designed to have few somatic items, women with a greater number of general medical problems or who rated their general health as worse had higher GAI scores. CONCLUSION: The GAI is a new scale designed specifically to measure anxiety in older people. In this Australian cohort of older women, the instrument had sound psychometric properties.
Resumo:
Obesity is a major public health problem in both developed and developing countries. The body mass index (BMI) is the most common index used to define obesity. The universal application of the same BMI classification across different ethnic groups is being challenged due to the inability of the index to differentiate fat mass (FM) and fat�]free mass (FFM) and the recognized ethnic differences in body composition. A better understanding of the body composition of Asian children from different backgrounds would help to better understand the obesity�]related health risks of people in this region. Moreover, the limitations of the BMI underscore the necessity to use where possible, more accurate measures of body fat assessment in research and clinical settings in addition to BMI, particularly in relation to the monitoring of prevention and treatment efforts. The aim of the first study was to determine the ethnic difference in the relationship between BMI and percent body fat (%BF) in pre�]pubertal Asian children from China, Lebanon, Malaysia, the Philippines, and Thailand. A total of 1039 children aged 8�]10 y were recruited using a non�]random purposive sampling approach aiming to encompass a wide BMI range from the five countries. Percent body fat (%BF) was determined using the deuterium dilution technique to quantify total body water (TBW) and subsequently derive proportions of FM and FFM. The study highlighted the sex and ethnic differences between BMI and %BF in Asian children from different countries. Girls had approximately 4.0% higher %BF compared with boys at a given BMI. Filipino boys tended to have a lower %BF than their Chinese, Lebanese, Malay and Thai counterparts at the same age and BMI level (corrected mean %BF was 25.7�}0.8%, 27.4�}0.4%, 27.1�}0.6%, 27.7�}0.5%, 28.1�}0.5% for Filipino, Chinese, Lebanese, Malay and Thai boys, respectively), although they differed significantly from Thai and Malay boys. Thai girls had approximately 2.0% higher %BF values than Chinese, Lebanese, Filipino and Malay counterparts (however no significant difference was seen among the four ethnic groups) at a given BMI (corrected mean %BF was 31.1�}0.5%, 28.6�}0.4%, 29.2�}0.6%, 29.5�}0.6%, 29.5�}0.5% for Thai, Chinese, Lebanese, Malay and Filipino girls, respectively). However, the ethnic difference in BMI�]%BF relationship varied by BMI. Compared with Caucasians, Asian children had a BMI 3�]6 units lower for a given %BF. More than one third of obese Asian children in the study were not identified using the WHO classification and more than half were not identified using the International Obesity Task Force (IOTF) classification. However, use of the Chinese classification increased the sensitivity by 19.7%, 18.1%, 2.3%, 2.3%, and 11.3% for Chinese, Lebanese, Malay, Filipino and Thai girls, respectively. A further aim of the first study was to determine the ethnic difference in body fat distribution in pre�]pubertal Asian children from China, Lebanon, Malaysia, and Thailand. The skin fold thicknesses, height, weight, waist circumference (WC) and total adiposity (as determined by deuterium dilution technique) of 922 children from the four countries was assessed. Chinese boys and girls had a similar trunk�]to�]extremity skin fold thickness ratio to Thai counterparts and both groups had higher ratios than the Malays and Lebanese at a given total FM. At a given BMI, both Chinese and Thai boys and girls had a higher WC than Malays and Lebanese (corrected mean WC was 68.1�}0.2 cm, 67.8�}0.3 cm, 65.8�}0.4 cm, 64.1�}0.3 cm for Chinese, Thai, Lebanese and Malay boys, respectively; 64.2�}0.2 cm, 65.0�}0.3 cm, 62.9�}0.4 cm, 60.6�}0.3 cm for Chinese, Thai, Lebanese and Malay girls, respectively). Chinese boys and girls had lower trunk fat adjusted subscapular/suprailiac skinfold ratio compared with Lebanese and Malay counterparts. The second study aimed to develop and cross�]validate bioelectrical impedance analysis (BIA) prediction equations of TBW and FFM for Asian pre�]pubertal children from China, Lebanon, Malaysia, the Philippines, and Thailand. Data on height, weight, age, gender, resistance and reactance measured by BIA were collected from 948 Asian children (492 boys and 456 girls) aged 8�]10 y from the five countries. The deuterium dilution technique was used as the criterion method for the estimation of TBW and FFM. The BIA equations were developed from the validation group (630 children randomly selected from the total sample) using stepwise multiple regression analysis and cross�]validated in a separate group (318 children) using the Bland�]Altman approach. Age, gender and ethnicity influenced the relationship between the resistance index (RI = height2/resistance), TBW and FFM. The BIA prediction equation for the estimation of TBW was: TBW (kg) = 0.231�~Height2 (cm)/resistance (ƒ¶) + 0.066�~Height (cm) + 0.188�~Weight (kg) + 0.128�~Age (yr) + 0.500�~Sex (male=1, female=0) . 0.316�~Ethnicity (Thai ethnicity=1, others=0) �] 4.574, and for the estimation of FFM: FFM (kg) = 0.299�~Height2 (cm)/resistance (ƒ¶) + 0.086�~Height (cm) + 0.245�~Weight (kg) + 0.260�~Age (yr) + 0.901�~Sex (male=1, female=0) �] 0.415�~Ethnicity (Thai ethnicity=1, others=0) �] 6.952. The R2 was 88.0% (root mean square error, RSME = 1.3 kg), 88.3% (RSME = 1.7 kg) for TBW and FFM equation, respectively. No significant difference between measured and predicted TBW and between measured and predicted FFM for the whole cross�]validation sample was found (bias = �]0.1�}1.4 kg, pure error = 1.4�}2.0 kg for TBW and bias = �]0.2�}1.9 kg, pure error = 1.8�}2.6 kg for FFM). However, the prediction equation for estimation of TBW/FFM tended to overestimate TBW/FFM at lower levels while underestimate at higher levels of TBW/FFM. Accuracy of the general equation for TBW and FFM compared favorably with both BMI�]specific and ethnic�]specific equations. There were significant differences between predicted TBW and FFM from external BIA equations derived from Caucasian populations and measured values in Asian children. There were three specific aims of the third study. The first was to explore the relationship between obesity and metabolic syndrome and abnormalities in Chinese children. A total of 608 boys and 800 girls aged 6�]12 y were recruited from four cities in China. Three definitions of pediatric metabolic syndrome and abnormalities were used, including the International Diabetes Federation (IDF) and National Cholesterol Education Program (NCEP) definition for adults modified by Cook et al. and de Ferranti et al. The prevalence of metabolic syndrome varied with different definitions, was highest using the de Ferranti definition (5.4%, 24.6% and 42.0%, respectively for normal�]weight, overweight and obese children), followed by the Cook definition (1.5%, 8.1%, and 25.1%, respectively), and the IDF definition (0.5%, 1.8% and 8.3%, respectively). Overweight and obese children had a higher risk of developing the metabolic syndrome compared to normal�]weight children (odds ratio varied with different definitions from 3.958 to 6.866 for overweight children, and 12.640�]26.007 for obese children). Overweight and obesity also increased the risk of developing metabolic abnormalities. Central obesity and high triglycerides (TG) were the most common while hyperglycemia was the least frequent in Chinese children regardless of different definitions. The second purpose was to determine the best obesity index for the prediction of cardiovascular (CV) risk factor clustering across a 2�]y follow�]up among BMI, %BF, WC and waist�]to�]height ratio (WHtR) in Chinese children. Height, weight, WC, %BF as determined by BIA, blood pressure, TG, high�]density lipoprotein cholesterol (HDL�]C), and fasting glucose were collected at baseline and 2 years later in 292 boys and 277 girls aged 8�]10 y. The results showed the percentage of children who remained overweight/obese defined on the basis of BMI, WC, WHtR and %BF was 89.7%, 93.5%, 84.5%, and 80.4%, respectively after 2 years. Obesity indices at baseline significantly correlated with TG, HDL�]C, and blood pressure at both baseline and 2 years later with a similar strength of correlations. BMI at baseline explained the greatest variance of later blood pressure. WC at baseline explained the greatest variance of later HDL�]C and glucose, while WHtR at baseline was the main predictor of later TG. Receiver�]operating characteristic (ROC) analysis explored the ability of the four indices to identify the later presence of CV risk. The overweight/obese children defined on the basis of BMI, WC, WHtR or %BF were more likely to develop CV risk 2 years later with relative risk (RR) scores of 3.670, 3.762, 2.767, and 2.804, respectively. The final purpose of the third study was to develop age�] and gender�]specific percentiles of WC and WHtR and cut�]off points of WC and WHtR for the prediction of CV risk in Chinese children. Smoothed percentile curves of WC and WHtR were produced in 2830 boys and 2699 girls aged 6�]12 y randomly selected from southern and northern China using the LMS method. The optimal age�] and gender�]specific thresholds of WC and WHtR for the prediction of cardiovascular risk factors clustering were derived in a sub�]sample (n=1845) by ROC analysis. Age�] and gender�]specific WC and WHtR percentiles were constructed. The WC thresholds were at the 90th and 84th percentiles for Chinese boys and girls, respectively, with sensitivity and specificity ranging from 67.2% to 83.3%. The WHtR thresholds were at the 91st and 94th percentiles for Chinese boys and girls, respectively, with sensitivity and specificity ranging from 78.6% to 88.9%. The cut�]offs of both WC and WHtR were age�] and gender�]dependent. In conclusion, the current thesis quantifies the ethnic differences in the BMI�]%BF relationship and body fat distribution between Asian children from different origins and confirms the necessity to consider ethnic differences in body composition when developing BMI and other obesity index criteria for obesity in Asian children. Moreover, ethnicity is also important in BIA prediction equations. In addition, WC and WHtR percentiles and thresholds for the prediction of CV risk in Chinese children differ from other populations. Although there was no advantage of WC or WHtR over BMI or %BF in the prediction of CV risk, obese children had a higher risk of developing the metabolic syndrome and abnormalities than normal�]weight children regardless of the obesity index used.
Resumo:
The quality of conceptual business process models is highly relevant for the design of corresponding information systems. In particular, a precise measurement of model characteristics can be beneficial from a business perspective, helping to save costs thanks to early error detection. This is just as true from a software engineering point of view. In this latter case, models facilitate stakeholder communication and software system design. Research has investigated several proposals as regards measures for business process models, from a rather correlational perspective. This is helpful for understanding, for example size and complexity as general driving forces of error probability. Yet, design decisions usually have to build on thresholds, which can reliably indicate that a certain counter-action has to be taken. This cannot be achieved only by providing measures; it requires a systematic identification of effective and meaningful thresholds. In this paper, we derive thresholds for a set of structural measures for predicting errors in conceptual process models. To this end, we use a collection of 2,000 business process models from practice as a means of determining thresholds, applying an adaptation of the ROC curves method. Furthermore, an extensive validation of the derived thresholds was conducted by using 429 EPC models from an Australian financial institution. Finally, significant thresholds were adapted to refine existing modeling guidelines in a quantitative way.
Resumo:
An elevated particle number concentration (PNC) observed during nucleation events could play a significant contribution to the total particle load and therefore to the air pollution in the urban environments. Therefore, a field measurement study of PNC was commenced to investigate the temporal and spatial variations of PNC within the urban airshed of Brisbane, Australia. PNC was monitored at urban (QUT), roadside (WOO) and semi-urban (ROC) areas around the Brisbane region during 2009. During the morning traffic peak period, the highest relative fraction of PNC reached about 5% at QUT and WOO on weekdays. PNC peaks were observed around noon, which correlated with the highest solar radiation levels at all three stations, thus suggesting that high PNC levels were likely to be associated with new particle formation caused by photochemical reactions. Wind rose plots showed relatively higher PNC for the NE direction, which was associated with industrial pollution, accounting for 12%, 9% and 14% of overall PNC at QUT, WOO and ROC, respectively. Although there was no significant correlation between PNC at each station, the variation of PNC was well correlated among three stations during regional nucleation events. In addition, PNC at ROC was significantly influenced by upwind urban pollution during the nucleation burst events, with the average enrichment factor of 15.4. This study provides an insight into the influence of regional nucleation events on PNC in the Brisbane region and it the first study to quantify the effect of urban pollution on semi-urban PNC through the nucleation events. © 2012 Author(s).
Resumo:
OBJECTIVE There has been a dramatic increase in vitamin D testing in Australia in recent years, prompting calls for targeted testing. We sought to develop a model to identify people most at risk of vitamin D deficiency. DESIGN AND PARTICIPANTS This is a cross-sectional study of 644 60- to 84-year-old participants, 95% of whom were Caucasian, who took part in a pilot randomized controlled trial of vitamin D supplementation. MEASUREMENTS Baseline 25(OH)D was measured using the Diasorin Liaison platform. Vitamin D insufficiency and deficiency were defined using 50 and 25 nmol/l as cut-points, respectively. A questionnaire was used to obtain information on demographic characteristics and lifestyle factors. We used multivariate logistic regression to predict low vitamin D and calculated the net benefit of using the model compared with 'test-all' and 'test-none' strategies. RESULTS The mean serum 25(OH)D was 42 (SD 14) nmol/1. Seventy-five per cent of participants were vitamin D insufficient and 10% deficient. Serum 25(OH)D was positively correlated with time outdoors, physical activity, vitamin D intake and ambient UVR, and inversely correlated with age, BMI and poor self-reported health status. These predictors explained approximately 21% of the variance in serum 25(OH)D. The area under the ROC curve predicting vitamin D deficiency was 0·82. Net benefit for the prediction model was higher than that for the 'test-all' strategy at all probability thresholds and higher than the 'test-none' strategy for probabilities up to 60%. CONCLUSION Our model could predict vitamin D deficiency with reasonable accuracy, but it needs to be validated in other populations before being implemented.