983 resultados para RNA processing


Relevância:

70.00% 70.00%

Publicador:

Resumo:

RPP2, an essential gene that encodes a 15.8-kDa protein subunit of nuclear RNase P, has been identified in the genome of Saccharomyces cerevisiae. Rpp2 was detected by sequence similarity with a human protein, Rpp20, which copurifies with human RNase P. Epitope-tagged Rpp2 can be found in association with both RNase P and RNase mitochondrial RNA processing in immunoprecipitates from crude extracts of cells. Depletion of Rpp2 protein in vivo causes accumulation of precursor tRNAs with unprocessed introns and 5′ and 3′ termini, and leads to defects in the processing of the 35S precursor rRNA. Rpp2-depleted cells are defective in processing of the 5.8S rRNA. Rpp2 immunoprecipitates cleave both yeast precursor tRNAs and precursor rRNAs accurately at the expected sites and contain the Rpp1 protein orthologue of the human scleroderma autoimmune antigen, Rpp30. These results demonstrate that Rpp2 is a protein subunit of nuclear RNase P that is functionally conserved in eukaryotes from yeast to humans.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

During recent studies of ribonucleolytic “degradosome” complexes of Escherichia coli, we found that degradosomes contain certain RNAs as well as RNase E and other protein components. One of these RNAs is ssrA (for small stable RNA) RNA (also known as tm RNA or 10Sa RNA), which functions as both a tRNA and mRNA to tag the C-terminal ends of truncated proteins with a short peptide and target them for degradation. Here, we show that mature 363-nt ssrA RNA is generated by RNase E cleavage at the CCA-3′ terminus of a 457-nt ssrA RNA precursor and that interference with this cleavage in vivo leads to accumulation of the precursor and blockage of SsrA-mediated proteolysis. These results demonstrate that RNase E is required to produce mature ssrA RNA and for normal ssrA RNA peptide-tagging activity. Our findings indicate that RNase E, an enzyme already known to have a central role in RNA processing and decay in E. coli, also has the previously unsuspected ability to affect protein degradation through its role in maturation of the 3′ end of ssrA RNA.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To study the cleavage mechanism of bacterial Nase P RNA, we have synthesized precursor tRNA substrates carrying a single Rp- or Sp-phosphorothioate modification at the RNase P cleavage site. Both the Sp- and the Rp-diastereomer reduced the rate of processing by Escherichia coli RNase P RNA at least 1000-fold under conditions where the chemical step is rate-limiting. The Rp-modification had no effect and the Sp-modification had a moderate effect on precursor tRNA ground state binding to RNase P RNA. Processing of the Rp-diastereomeric substrate was largely restored in the presence of the "thiophilic" Cd2+ as the only divalent metal ion, demonstrating direct metal ion coordination to the (pro)-Rp substituent at the cleavage site and arguing against a specific role for Mg(2+)-ions at the pro-Sp oxygen. For the Rp-diastereomeric substrate, Hill plot analysis revealed a cooperative dependence upon [Cd2+] of nH = 1.8, consistent with a two-metal ion mechanism. In the presence of the Sp-modification, neither Mn2+ nor Cd2+ was able to restore detectable cleavage at the canonical site. Instead, the ribozyme promotes cleavage at the neighboring unmodified phosphodiester with low efficiency. Dramatic inhibition of the chemical step by both the Rp- and Sp-phosphorothioate modification is unprecedented among known ribozymes and points to unique features of transition state geometry in the RNase P RNA-catalyzed reaction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A hyperphosphorylated form of the largest subunit of RNA polymerase II (pol IIo) is associated with the pre-mRNA splicing process. Pol IIo was detected in association with a subset of small nuclear ribonucleoprotein particle and Ser-Arg protein splicing factors and also with pre-mRNA splicing complexes assembled in vitro. A subpopulation of pol IIo was localized to nuclear "speckle" domains enriched in splicing factors, indicating that it may also be associated with RNA processing in vivo. Moreover, pol IIo was retained in a similar pattern following in situ extraction of cells and was quantitatively recovered in the nuclear matrix fraction. The results implicate nuclear matrix-associated hyperphosphorylated pol IIo as a possible link in the coordination of transcription and splicing processes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Leishmaniavirus (LRV) is a double-stranded RNA virus that persistently infects the protozoan parasite Leishmania. LRV produces a short RNA transcript, corresponding to the 5' end of positive-sense viral RNA, both in vivo and in in vitro polymerase assays. The short transcript is generated by a single site-specific cleavage event in the 5' untranslated region of the 5.3-kb genome. This cleavage event can be reproduced in vitro with purified viral particles and a substrate RNA transcript possessing the viral cleavage site. A region of nucleotides required for cleavage was identified by analyzing the cleavage sites yielding the short transcripts of various LRV isolates. A 6-nt deletion at this cleavage site completely abolished RNA processing. In an in vitro cleavage assay, baculovirus-expressed capsid protein possessed an endonuclease activity identical to that of native virions, showing that the viral capsid protein is the RNA endonuclease. Identification of the LRV capsid protein as an RNA endonuclease is unprecedented among known viral capsid proteins.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The C4 repressor of the temperate bacteriophages P1 and P7 inhibits antirepressor (Ant) synthesis and is essential for establishment and maintenance of lysogeny. C4 is an antisense RNA acting on a target, Ant mRNA, which is transcribed from the same promoter. The antisense-target RNA interaction requires processing of C4 RNA from a precursor RNA. Here we show that 5' maturation of C4 RNA in vivo depends on RNase P. In vitro, Escherichia coli RNase P and its catalytic RNA subunit (M1 RNA) can generate the mature 5' end of C4 RNA from P1 by a single endonucleolytic cut, whereas RNase P from the E. coli rnpA49 mutant, carrying a missense mutation in the RNase P protein subunit, is defective in the 5' maturation of C4 RNA. Primer extension analysis of RNA transcribed in vivo from a plasmid carrying the P1 c4 gene revealed that 5'-mature C4 RNA was the predominant species in rnpA+ bacteria, whereas virtually no mature C4 RNA was found in the temperature-sensitive rnpA49 strain at the restrictive temperature. Instead, C4 RNA molecules carrying up to five extra nucleotides beyond the 5' end accumulated. The same phenotype was observed in rnpA+ bacteria which harbored a plasmid carrying a P7 c4 mutant gene with a single C-->G base substitution in the structural homologue to the CCA 3' end of tRNAs. Implications of C4 RNA processing for the lysis/lysogeny decision process of bacteriophages P1 and P7 are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coiled bodies (CBs) are nuclear organelles whose structures appear to be highly conserved in evolution. In rapidly cycling cells, they are typically located in the nucleoplasm but are often found in contact with the nucleolus. The CBs in human cells contain a unique protein, called p80-coilin. Studies on amphibian oocyte nuclei have revealed a protein within the "sphere" organelle that shares significant structural similarity to p80-coilin. Spheres and CBs are also highly enriched in small nuclear ribonucleoproteins and other RNA-processing components. We present evidence that, like spheres, CBs contain U7 small nuclear RNA (snRNA) and associate with specific chromosomal loci. Using biotinylated 2'-O-methyl oligonucleotides complementary to the 5' end of U7 snRNA and fluorescence in situ hybridization, we show that U7 is distributed throughout the nucleoplasm, excluding nucleoli, and is concentrated in CBs. Interestingly, we found that CBs often associate with subsets of the histone, U1, and U2 snRNA gene loci in interphase HeLa-ATCC and HEp-2 monolayer cells. However, in a strain of suspension-grown HeLa cells, called HeLa-JS1000, we found a much lower rate of association between CBs and snRNA genes. Possible roles for CBs in the metabolism of these various histone and snRNAs are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Farnesol (FOH) is a non-sterol isoprenoid produced by dephosphorylation of farnesyl pyrophosphate, a catabolite of the cholesterol biosynthetic pathway. These isoprenoids inhibit proliferation and induce apoptosis. It has been shown previously that FOH triggers morphological features characteristic of apoptosis in the filamentous fungus Aspergillus nidulans. Here, we investigate which pathways are influenced through FOH by examining the transcriptional profile of A. nidulans exposed to this isoprenoid. We observed decreased mRNA abundance of several genes involved in RNA processing and modification, transcription, translation, ribosomal structure and biogenesis, amino acid transport and metabolism, and ergosterol biosynthesis. We also observed increased mRNA expression of genes encoding a number of mitochondrial proteins and characterized in detail one of them, the aifA, encoding the Apoptosis-Inducing Factor (AIF)-like mitochondrial oxidoreductase. The Delta aifA mutant is more sensitive to FOH (about 8.0% and 0% survival when exposed to 10 and 100 mu M FOH respectively) than the wild type (about 97% and 3% survival when exposed to 10 and 100 mu M FOH respectively). These results suggest that AifA is possibly important for decreasing the effects of FOH and reactive oxygen species. Furthermore, we showed an involvement of autophagy and protein kinase C in A. nidulans FOH-induced apoptosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cytoplasmic and nuclear protein Ki- 1 / 57 was first identified in malignant cells from Hodgkin`s lymphoma. Despite studies showing its phosphorylation, arginine methylation, and interaction with several regulatory proteins, the functional role of Ki- 1 / 57 in human cells remains to be determined. Here, we investigated the relationship of Ki- 1 / 57 with RNA functions. Through immunoprecipitation assays, we verified the association of Ki- 1 / 57 with the endogenous splicing proteins hnRNPQ and SFRS9 in HeLa cell extracts. We also found that recombinant Ki- 1 / 57 was able to bind to a poly- U RNA probe in electrophoretic mobility shift assays. In a classic splicing test, we showed that Ki- 1 / 57 can modify the splicing site selection of the adenoviral E1A minigene in a dose- dependent manner. Further confocal and. uorescence microscopy analysis revealed the localization of enhanced green. uorescent protein - Ki- 1 / 57 to nuclear bodies involved in RNA processing and or small nuclear ribonucleoprotein assembly, depending on the cellular methylation status and its N- terminal region. In summary, our findings suggest that Ki- 1 / 57 is probably involved in cellular events related to RNA functions, such as pre- mRNA splicing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glioblastoma multiforme (GBM) is a highly invasive and radioresistant brain tumor. Aiming to study how glioma cells respond to gamma-rays in terms of biological processes involved in cellular responses, we performed experiments at cellular context and gene expression analysis in U343-MG-a GBM cells irradiated with 1 Gy and collected at 6 h post-irradiation. The survival rate was approximately 61% for 1 Gy and was completely reduced at 16 Gy. By performing the microarray technique, 859 cDNA clones were analyzed. The Significance Analysis of Microarray algorithm indicated 196 significant expressed genes (false discovery rate (FDR) = 0.42%): 67 down-regulated and 97 up-regulated genes, which belong to several classes: metabolism, adhesion/cytoskeleton, signal transduction, cell cycle/apoptosis, membrane transport, DNA repair/DNA damage signaling, transcription factor, intracellular signaling, and RNA processing. Differential expression patterns of five selected genes (HSPA9B, INPP5A, PIP5K1A, FANCG, and TPP2) observed by the microarray analysis were further confirmed by the quantitative real time RT-PCR method, which demonstrated an up-regulation status of those genes. These results indicate a broad spectrum of biological processes (which may reflect the radio-resistance of U343 cells) that were altered in irradiated glioma cells, so as to guarantee cell survival.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

By spliced alignment of human DNA and transcript sequence data we constructed a data set of transcript-confirmed exons and introns from 2793 genes, 796 of which (28%) were seen to have multiple isoforms. We find that over one-third of human exons can translate in more than one frame, and that this is highly correlated with G+C content. Introns containing adenosine at donor site position +3 (A3), rather than guanosine (G3), are more common in low G+C regions, while the converse is true in high G+C regions. These two classes of introns are shown to have distinct lengths, consensus sequences and correlations among splice signals, leading to the hypothesis that A3 donor sites are associated with exon definition, and G3 donor sites with intron definition. Minor classes of introns, including GC-AG, U12-type GT-AG, weak, and putative AG-dependant introns are identified and characterized. Cassette exons are more prevalent in low G+C regions, while exon isoforms are more prevalent in high G+C regions. Cassette exon events outnumber other alternative events, while exon isoform events involve truncation twice as often as extension, and occur at acceptor sites twice as often as at donor sites. Alternative splicing is usually associated with weak splice signals, and in a majority of cases, preserves the coding frame. The reported characteristics of constitutive and alternative splice signals, and the hypotheses offered regarding alternative splicing and genome organization, have important implications for experimental research into RNA processing. The 'AltExtron' data sets are available at http://www.bit.uq.edu.au/altExtron/ and http://www.ebi.ac.uk/similar tothanaraj/altExtron/.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coiled bodies (CBs) are structural constituents observed in nuclei of most eukaryotic cells. They usually occur in the nucleoplasm as well as in contact with the nucleolar surface. In this work we studied the hepatocyte nuclei of hibernating dormice in order to investigate possible modifications of CBs along the seasonal cycle. CBs were abundant during hibernation and rapidly disappeared upon arousal from hibernation. Moreover, CBs were frequently found to be integrated into the nucleolar body. Immunocytochemical analyses showed that CBs contain nucleoplasmic as well as nucleolar RNA-processing factors, suggesting an "ambiguous" role for this organelle in the nuclear functions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since the discovery that genes are split into intron and exons, the studies of the mechanisms involved in splicing pointed to presence of consensus signals in an attempt to generalize the process for all living cells. However, as discussed in the present review, splicing is a theme full of variations. The trans-splicing of pre-mRNAs, the joining of exons from distinct transcripts, is one of these variations with broad distribution in the phylogenetic tree. The biological meaning of this phenomenon is discussed encompassing reactions resembling a possible noise to mechanisms of gene expression regulation. All of them however, can contribute to the generation of life diversity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The transcription factor Aiolos (also known as IKZF3), a member of the Ikaros family of zinc-finger proteins, plays an important role in the control of B lymphocyte differentiation and proliferation. Previously, multiple isoforms of Ikaros family members arising from differential splicing have been described and we now report a number of novel isoforms of Aiolos. It has been demonstrated that full-length Ikaros family isoforms localize to heterochromatin and that they can associate with complexes containing histone deacetylase (HDAC). In this study, for the first time we directly investigate the cellular localization of various Aiolos isoforms, their ability to heterodimerize with Ikaros and associate with HDAC-containing complexes, and the effects on histone modification and binding to putative targets. Our work demonstrates that the cellular activities of Aiolos isoforms are dependent on combinations of various functional domains arising from the differential splicing of mRNA transcripts. These data support the general principle that the function of an individual protein is modulated through alternative splicing, and highlight a number of potential implications for Aiolos in normal and aberrant lymphocyte function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The global response regulator GacA of Pseudomonas aeruginosa PAO1 positively controls the production of the quorum sensing signal molecule N-butanoyl-homoserine-lactone (C4-HSL) and hence the synthesis of several C4-HSL-dependent virulence factors, including hydrogen cyanide (HCN). This study presents evidence that GacA positively influences the transcription of the rhlI gene, specifying C4-HSL synthase, explaining the quorum sensing-dependent transcriptional control of the HCN biosynthetic genes (hcnABC). In addition, GacA was found to modulate hcn gene expression positively at a post-transcriptional level involving the hcnA ribosome-binding site. Thus, the activating effect of GacA on cyanogenesis results from both transcriptional and post-transcriptional mechanisms.