978 resultados para RNA, Messenger -- metabolism
Resumo:
The protein sequence deduced from the open reading frame of a human placental cDNA encoding a cAMP-responsive enhancer (CRE)-binding protein (CREB-327) has structural features characteristic of several other transcriptional transactivator proteins including jun, fos, C/EBP, myc, and CRE-BP1. Results of Southwestern analysis of nuclear extracts from several different cell lines show that there are multiple CRE-binding proteins, which vary in size in cell lines derived from different tissues and animal species. To examine the molecular diversity of CREB-327 and related proteins at the nucleic acid level, we used labeled cDNAs from human placenta that encode two different CRE-binding proteins (CREB-327 and CRE-BP1) to probe Northern and Southern blots. Both probes hybridized to multiple fragments on Southern blots of genomic DNA from various species. Alternatively, when a human placental c-jun probe was hybridized to the same blot, a single fragment was detected in most cases, consistent with the intronless nature of the human c-jun gene. The CREB-327 probe hybridized to multiple mRNAs, derived from human placenta, ranging in size from 2-9 kilobases. In contrast, the CRE-BP1 probe identified a single 4-kilobase mRNA. Sequence analyses of several overlapping human genomic cosmid clones containing CREB-327 sequences in conjunction with polymerase chain reaction indicates that the CREB-327/341 cDNAs are composed of at least eight or nine exons, and analyses of human placental cDNAs provide direct evidence for at least one alternatively spliced exon. Analyses of mouse/hamster-human hybridoma DNAs by Southern blotting and polymerase chain reaction localizes the CREB-327/341 gene to human chromosome 2. The results indicate that there is a dichotomy of CREB-like proteins, those that are related by overall structure and DNA-binding specificity as well as those that are related by close similarities of primary sequences.
Resumo:
TMPRSS3 encodes a transmembrane serine protease that contains both LDLRA and SRCR domains and is mutated in non-syndromic autosomal recessive deafness (DFNB8/10). To study its function, we cloned the mouse ortholog which maps to Mmu17, which is structurally similar to the human gene and encodes a polypeptide with 88% identity to the human protein. RT-PCR and RNA in situ hybridization on rat and mouse cochlea revealed that Tmprss3 is expressed in the spiral ganglion, the cells supporting the organ of Corti and the stria vascularis. RT-PCR on mouse tissues showed expression in the thymus, stomach, testis and E19 embryos. Transient expression of wild-type or tagged TMPRSS3 protein showed a primary localization in the endoplasmic reticulum. The epithelial amiloride-sensitive sodium channel (ENaC), which is expressed in many sodium-reabsorbing tissues including the inner ear and is regulated by membrane-bound channel activating serine proteases (CAPs), is a potential substrate of TMPRSS3. In the Xenopus oocyte expression system, proteolytic processing of TMPRSS3 was associated with increased ENaC mediated currents. In contrast, 6 TMPRSS3 mutants (D103G, R109W, C194F, W251C, P404L, C407R) causing deafness and a mutant in the catalytic triad of TMPRSS3 (S401A), failed to undergo proteolytic cleavage and activate ENaC. These data indicate that important signaling pathways in the inner ear are controlled by proteolytic cleavage and suggest: (i) the existence of an auto-catalytic processing by which TMPRSS3 would become active, and (ii) that ENaC could be a substrate of TMPRSS3 in the inner ear.
Resumo:
Ochratoxin A (OTA), a mycotoxin and widespread food contaminant, is known for its patent nephrotoxicity and potential neurotoxicity. Previous observations in vitro showed that in the CNS, glial cells were particularly sensitive to OTA. In the search for the molecular mechanisms underlying OTA neurotoxicity, we investigated the relationship between OTA toxicity and glial reactivity, in serum-free aggregating brain cell cultures. Using quantitative reverse transcriptase-polymerase chain reaction to analyze changes in gene expression, we found that in astrocytes, non cytotoxic concentrations of OTA down-regulated glial fibrillary acidic protein, while it up-regulated vimentin and the peroxisome proliferator-activated receptor-gamma expression. OTA also up-regulated the inducible nitric oxide synthase and the heme oxygenase-1. These OTA-induced alterations in gene expression were more pronounced in cultures at an advanced stage of maturation. The natural peroxisome proliferator-activated receptor-gamma ligand, 15-deoxy-delta(12,14) prostaglandin J2, and the cyclic AMP analog, bromo cyclic AMP, significantly attenuated the strong induction of peroxisome proliferator-activated receptor-gamma and inducible nitric oxide synthase, while they partially reversed the inhibitory effect of OTA on glial fibrillary acidic protein. The present results show that OTA affects the cytoskeletal integrity of astrocytes as well as the expression of genes pertaining to the brain inflammatory response system, and suggest that a relationship exists between the inflammatory events and the cytoskeletal changes induced by OTA. Furthermore, these results suggest that, by inducing an atypical glial reactivity, OTA may severely affect the neuroprotective capacity of glial cells.
Resumo:
BACKGROUND: The purpose of this work was to characterize the expression of drug and nutrient carriers along the anterior-posterior and crypt-villus axes of the intestinal epithelium and to study the validity of utilizing whole gut tissue rather than purified epithelial cells to examine regional variations in gene expression. RESULTS: We have characterized the mRNA expression profiles of 76 % of all currently known transporters along the anterior-posterior axis of the gut. This is the first study to describe the expression profiles of the majority of all known transporters in the intestine. The expression profiles of transporters, as defined according to the Gene Ontology consortium, were measured in whole tissue of the murine duodenum, jejunum, ileum and colon using high-density microarrays. For nine transporters (Abca1, Abcc1, Abcc3, Abcg8, Slc10a2, Slc28a2, Slc2a1, Slc34a2 and Slc5a8), the mRNA profiles were further measured by RT-PCR in laser micro-dissected crypt and villus epithelial cells corresponding to the aforementioned intestinal regions. With respect to differentially regulated transporters, the colon had a distinct expression profile from small intestinal segments. The majority (59 % for p cutoff < or = 0.05) of transporter mRNA levels were constant across the intestinal sections studied. For the transporter subclass "carrier activity", which contains the majority of known carriers for biologically active compounds, a significant change (p < or = 0.05) along the anterior-posterior axis was observed. CONCLUSION: All nine transporters examined in laser-dissected material demonstrated good replication of the region-specific profiles revealed by microarray. Furthermore, we suggest that the distribution characteristics of Slc5a8 along the intestinal tract render it a suitable candidate carrier for monocarboxylate drugs in the posterior portion of the intestine. Our findings also predict that there is a significant difference in the absorption of carrier-mediated compounds in the different intestinal segments. The most pronounced differences can be expected between the adjoining segments ileum and colon, but the differences between the other adjoining segments are not negligible. Finally, for the examined genes, profiles measured in whole intestinal tissue extracts are representative of epithelial cell-only gene expression.
Resumo:
Next-generation sequencing offers an unprecedented opportunity to jointly analyze cellular and viral transcriptional activity without prerequisite knowledge of the nature of the transcripts. SupT1 cells were infected with a vesicular stomatitis virus G envelope protein (VSV-G)-pseudotyped HIV vector. At 24 h postinfection, both cellular and viral transcriptomes were analyzed by serial analysis of gene expression followed by high-throughput sequencing (SAGE-Seq). Read mapping resulted in 33 to 44 million tags aligning with the human transcriptome and 0.23 to 0.25 million tags aligning with the genome of the HIV-1 vector. Thus, at peak infection, 1 transcript in 143 is of viral origin (0.7%), including a small component of antisense viral transcription. Of the detected cellular transcripts, 826 (2.3%) were differentially expressed between mock- and HIV-infected samples. The approach also assessed whether HIV-1 infection modulates the expression of repetitive elements or endogenous retroviruses. We observed very active transcription of these elements, with 1 transcript in 237 being of such origin, corresponding on average to 123,123 reads in mock-infected samples (0.40%) and 129,149 reads in HIV-1-infected samples (0.45%) mapping to the genomic Repbase repository. This analysis highlights key details in the generation and interpretation of high-throughput data in the setting of HIV-1 cellular infection.
Resumo:
Background: Sulfate and phosphate are both vital macronutrients required for plant growth and development. Despite evidence for interaction between sulfate and phosphate homeostasis, no transcriptional factor has yet been identified in higher plants that affects, at the gene expression and physiological levels, the response to both elements. This work was aimed at examining whether PHR1, a transcription factor previously shown to participate in the regulation of genes involved in phosphate homeostasis, also contributed to the regulation and activity of genes involved in sulfate inter-organ transport. Results: Among the genes implicated in sulfate transport in Arabidopsis thaliana, SULTR1;3 and SULTR3;4 showed up-regulation of transcripts in plants grown under phosphate-deficient conditions. The promoter of SULTR1;3 contains a motif that is potentially recognizable by PHR1. Using the phr1 mutant, we showed that SULTR1;3 up regulation following phosphate deficiency was dependent on PHR1. Furthermore, transcript up regulation was found in phosphate-deficient shoots of the phr1 mutant for SULTR2;1 and SULTR3;4, indicating that PHR1 played both a positive and negative role on the expression of genes encoding sulfate transporters. Importantly, both phr1 and sultr1;3 mutants displayed a reduction in their sulfate shoot-to-root transfer capacity compared to wild-type plants under phosphate-deficient conditions. Conclusions: This study reveals that PHR1 plays an important role in sulfate inter-organ transport, in particular on the regulation of the SULTR1;3 gene and its impact on shoot-to-root sulfate transport in phosphate-deficient plants. PHR1 thus contributes to the homeostasis of both sulfate and phosphate in plants under phosphate deficiency. Such a function is also conserved in Chlamydomonas reinhardtii via the PHR1 ortholog PSR1.
Resumo:
Recent evidence has emerged that peroxisome proliferator-activated receptor alpha (PPARalpha), which is largely involved in lipid metabolism, can play an important role in connecting circadian biology and metabolism. In the present study, we investigated the mechanisms by which PPARalpha influences the pacemakers acting in the central clock located in the suprachiasmatic nucleus and in the peripheral oscillator of the liver. We demonstrate that PPARalpha plays a specific role in the peripheral circadian control because it is required to maintain the circadian rhythm of the master clock gene brain and muscle Arnt-like protein 1 (bmal1) in vivo. This regulation occurs via a direct binding of PPARalpha on a potential PPARalpha response element located in the bmal1 promoter. Reversely, BMAL1 is an upstream regulator of PPARalpha gene expression. We further demonstrate that fenofibrate induces circadian rhythm of clock gene expression in cell culture and up-regulates hepatic bmal1 in vivo. Together, these results provide evidence for an additional regulatory feedback loop involving BMAL1 and PPARalpha in peripheral clocks.
Resumo:
PURPOSE: To evaluate and validate mRNA expression markers capable of identifying patients with ErbB2-positive breast cancer associated with distant metastasis and reduced survival. PATIENTS AND METHODS: Expression of 60 genes involved in breast cancer biology was assessed by quantitative real-time PCR (qrt-PCR) in 317 primary breast cancer patients and correlated with clinical outcome data. Results were validated subsequently using two previously published and publicly available microarray data sets with different patient populations comprising 295 and 286 breast cancer samples, respectively. RESULTS: Of the 60 genes measured by qrt-PCR, urokinase-type plasminogen activator (uPA or PLAU) mRNA expression was the most significant marker associated with distant metastasis-free survival (MFS) by univariate Cox analysis in patients with ErbB2-positive tumors and an independent factor in multivariate analysis. Subsequent validation in two microarray data sets confirmed the prognostic value of uPA in ErbB2-positive tumors by both univariate and multivariate analysis. uPA mRNA expression was not significantly associated with MFS in ErbB2-negative tumors. Kaplan-Meier analysis showed in all three study populations that patients with ErbB2-positive/uPA-positive tumors exhibited significantly reduced MFS (hazard ratios [HR], 4.3; 95% CI, 1.6 to 11.8; HR, 2.7; 95% CI, 1.2 to 6.2; and, HR, 2.8; 95% CI, 1.1 to 7.1; all P < .02) as compared with the group with ErbB2-positive/uPA-negative tumors who exhibited similar outcome to those with ErbB2-negative tumors, irrespective of uPA status. CONCLUSION: After evaluation of 898 breast cancer patients, uPA mRNA expression emerged as a powerful prognostic indicator in ErbB2-positive tumors. These results were consistent among three independent study populations assayed by different techniques, including qrt-PCR and two microarray platforms.
Resumo:
The common ectodermal origin of the skin and nervous systems can be expected to predict likely interactions in the adult. Over the last couple of decades much progress has been made to elucidate the nature of these interactions, which provide multidirectional controls between the centrally located brain and the peripherally located skin and immune system. The opioid system is an excellent example of such an interaction and there is growing evidence that opioid receptors (OR) and their endogenous opioid agonists are functional in different skin structures, including peripheral nerve fibres, keratinocytes, melanocytes, hair follicles and immune cells. Greater knowledge of these skin-associated opioid interactions will be important for the treatment of chronic and acute pain and pruritus. Topical treatment of the skin with opioid ligands is particularly attractive as they are active with few side effects, especially if they cannot cross the blood-brain barrier. Moreover, cutaneous activation of the opioid system (e.g. by peripheral nerves, cutaneous and immune cells, especially in inflamed and damaged skin) can influence cell differentiation and apoptosis, and thus may be important for the repair of damaged skin. While many of the pieces of this intriguing puzzle remain to be found, we attempt in this review to weave a thread around available data to discuss how the peripheral opioid system may impact on different key players in skin physiology and pathology.
A key role of TRPC channels in the regulation of electromechanical activity of the developing heart.
Resumo:
Aims It is well established that dysfunction of voltage-dependent ion channels results in arrhythmias and conduction disturbances in the foetal and adult heart. However, the involvement of voltage-insensitive cationic TRPC (transient receptor potential canonical) channels remains unclear. We assessed the hypothesis that TRPC channels play a crucial role in the spontaneous activity of the developing heart.Methods and results TRPC isoforms were investigated in isolated hearts obtained from 4-day-old chick embryos. Using RT-PCR, western blotting and co-immunoprecipitation, we report for the first time that TRPC1, 3, 4, 5, 6, and 7 isoforms are expressed at the mRNA and protein levels and that they can form a macromolecular complex with the alpha 1C subunit of the L-type voltage-gated calcium channel (Cav1.2) in atria and ventricle. Using ex vivo electrocardiograms, electrograms of isolated atria and ventricle and ventricular mechanograms, we found that inhibition of TRPC channels by SKF-96365 leads to negative chrono-, dromo-, and inotropic effects, prolongs the QT interval, and provokes first-and second-degree atrioventricular blocks. Pyr3, a specific antagonist of TRPC3, affected essentially atrioventricular conduction. On the other hand, specific blockade of the L-type calcium channel with nifedipine rapidly stopped ventricular contractile activity without affecting rhythmic electrical activity.Conclusions These results give new insights into the key role that TRPC channels, via interaction with the Cav1.2 channel, play in regulation of cardiac pacemaking, conduction, ventricular activity, and contractility during cardiogenesis.
Resumo:
PPARs are a family of nuclear hormone receptors involved in various processes that could influence ovarian function. We investigated the cellular localization and expression of PPARs during follicular development in ovarian tissue collected from rats 0, 6, 12, 24, and 48 h post-PMSG. A second group of animals received human CG (hCG) 48 h post-PMSG. Their ovaries were removed 0, 4, 8, 12, and 24 h post-hCG to study the periovulatory period. mRNAs corresponding to the PPAR isotypes (alpha, delta, and gamma) were localized by in situ hybridization. Changes in the levels of mRNA for the PPARs were determined by ribonuclease protection assays. PPAR gamma mRNA was localized primarily to granulosa cells, and levels of expression did not change during follicular development. Four hours post-hCG, levels of mRNA for PPAR gamma decreased (P < 0.05) but not uniformly in all follicles. At 24 h post-hCG, levels of PPAR gamma mRNA were reduced 64%, but some follicles maintained high expression. In contrast, mRNAs for PPAR alpha and delta were located primarily in theca and stroma, and their levels did not change during the intervals studied. To investigate the physiologic significance of PPAR gamma in the ovary, granulosa cells from PMSG-primed rats were cultured for 48 h with prostaglandin J(2) (PGJ(2)) and ciglitazone, PPAR gamma activators. Both compounds increased progesterone and E2 secretion (P < 0.05). These data suggest that PPAR gamma is involved in follicular development, has a negative influence on the luteinization of granulosa cells, and/or regulates the periovulatory shift in steroid production. The more general and steady expression of PPARs alpha and delta indicate that they may play a role in basal ovarian function.
Resumo:
Anophthalmia and microphthalmia are important birth defects, but their pathogenesis remains incompletely understood. We studied a patient with severe unilateral microphthalmia who had a 2.7 Mb deletion at chromosome 18q22.1 that was inherited from his mother. In-situ hybridization showed that one of the deleted genes, TMX3, was expressed in the retinal neuroepithelium and lens epithelium in the developing murine eye. We re-sequenced TMX3 in 162 patients with anophthalmia or microphthalmia, and found two missense substitutions in unrelated patients: c.116G>A, predicting p.Arg39Gln, in a male with unilateral microphthalmia and retinal coloboma, and c.322G>A, predicting p.Asp108Asn, in a female with unilateral microphthalmia and severe micrognathia. We used two antisense morpholinos targeted against the zebrafish TMX3 orthologue, zgc:110025, to examine the effects of reduced gene expression in eye development. We noted that the morphant larvae resulting from both morpholinos had significantly smaller eye sizes and reduced labeling with islet-1 antibody directed against retinal ganglion cells at 2 days post fertilization. Co-injection of human wild type TMX3 mRNA rescued the small eye phenotype obtained with both morpholinos, whereas co-injection of human TMX3(p.Arg39Gln) mutant mRNA, analogous to the mutation in the patient with microphthalmia and coloboma, did not rescue the small eye phenotype. Our results show that haploinsufficiency for TMX3 results in a small eye phenotype and represents a novel genetic cause of microphthalmia and coloboma. Future experiments to determine if other thioredoxins are important in eye morphogenesis and to clarify the mechanism of function of TMX3 in eye development are warranted.
Resumo:
Study Objectives: The sleep-deprivation-induced changes in delta power, an electroencephalographical correlate of sleep need, and brain transcriptome profiles have importantly contributed to current hypotheses on sleep function. Because sleep deprivation also induces stress, we here determined the contribution of the corticosterone component of the stress response to the electrophysiological and molecular markers of sleep need in mice. Design: N/A Settings: Mouse sleep facility. Participants: C57BL/6J, AKR/J, DBA/2J mice. Interventions: Sleep deprivation, adrenalectomy (ADX). Measurements and Results: Sleep deprivation elevated corticosterone levels in 3 inbred strains, but this increase was larger in DBA/2J mice; i.e., the strain for which the rebound in delta power after sleep deprivation failed to reach significance. Elimination of the sleep-deprivation-associated corticosterone surge through ADX in DBA/2J mice did not, however, rescue the delta power rebound but did greatly reduce the number of transcripts affected by sleep deprivation. Genes no longer affected by sleep deprivation cover pathways previously implicated in sleep homeostasis, such as lipid, cholesterol (e.g., Ldlr, Hmgcs1, Dhcr7, -24, Fkbp5), energy and carbohydrate metabolism (e.g., Eno3, G6pc3, Mpdu1, Ugdh, Man1b1), protein biosynthesis (e.g., Sgk1, Alad, Fads3, Eif2c2, -3, Mat2a), and some circadian genes (Per1, -3), whereas others, such as Homer1a, remained unchanged. Moreover, several microRNAs were affected both by sleep deprivation and ADX. Conclusions: Our findings indicate that corticosterone contributes to the sleep-deprivation-induced changes in brain transcriptome that have been attributed to wakefulness per se. The study identified 78 transcripts that respond to sleep loss independent of corticosterone and time of day, among which genes involved in neuroprotection prominently feature, pointing to a molecular pathway directly relevant for sleep function.
Resumo:
The role of small, hydrophobic peptides that are associated with ion pumps or channels is still poorly understood. By using the Xenopus oocyte as an expression system, we have characterized the structural and functional properties of the gamma peptide which co-purifies with Na,K-ATPase. Immuno-radiolabeling of epitope-tagged gamma subunits in intact oocytes and protease protection assays show that the gamma peptide is a type I membrane protein lacking a signal sequence and exposing the N-terminus to the extracytoplasmic side. Co-expression of the rat or Xenopus gamma subunit with various proteins in the oocyte reveals that it specifically associates only with isozymes of Na,K-ATPase. The gamma peptide does not influence the formation and cell surface expression of functional Na,K-ATPase alpha-beta complexes. On the other hand, the gamma peptide itself needs association with Na,K-ATPase in order to be stably expressed in the oocyte and to be transported efficiently to the plasma membrane. Gamma subunits do not associate with individual alpha or beta subunits but only interact with assembled, transport-competent alpha-beta complexes. Finally, electrophysiological measurements indicate that the gamma peptide modulates the K+ activation of Na,K pumps. These data document for the first time the membrane topology, the specificity of association and a potential functional role for the gamma subunit of Na,K-ATPase.
Resumo:
In prokaryotes and eukaryotes, most genes appear to be transcribed during short periods called transcriptional bursts, interspersed by silent intervals. We describe how such bursts generate gene-specific temporal patterns of messenger RNA (mRNA) synthesis in mammalian cells. To monitor transcription at high temporal resolution, we established various gene trap cell lines and transgenic cell lines expressing a short-lived luciferase protein from an unstable mRNA, and recorded bioluminescence in real time in single cells. Mathematical modeling identified gene-specific on- and off-switching rates in transcriptional activity and mean numbers of mRNAs produced during the bursts. Transcriptional kinetics were markedly altered by cis-regulatory DNA elements. Our analysis demonstrated that bursting kinetics are highly gene-specific, reflecting refractory periods during which genes stay inactive for a certain time before switching on again.