947 resultados para RIETVELD REFINEMENT
Resumo:
The crystal structure of KNb0.5V0.5OPO4, a new KTiOPO4 isomorph, has been refined from powder X-ray diffraction data by Rietveld refinement. The structure is orthorhombic, space group Pna2(1), with a = 12.933(1), b = 6.4713(8), and c = 10.7273(6) Angstrom, Z = 8. There is a preferential distribution of Nb(V) and V(III) atoms in the octahedral M(1) [0.806Nb, 0.194V] and M(2) [0.194Nb, 0.806V] sites, the M(1)O-6 octahedra being more distorted than the M(2)O-6 octahedra. The results are compared with other KTiOPO4 derivatives.
Resumo:
We have examined the magnetotransport properties and the structure, by Rietveld refinement of powder X-ray data, of the phases RE(1.2)Sr(1.8)Mn(2)O(7) (RE = La, Pr, Nd). We find that on cooling, La1.2Sr1.8Mn2O7 undergoes a transition to a nearly perfect ferromagnet with 90% magnetization at 1.45 T, as reported by earlier workers, but the Pr and Nd phases show only a small magnetization that grows gradually as the temperature is decreased. There seems to be significant correlation between electrical transport and the Jahn-Teller elongation of the apical Mn-O bonds in these systems. The elongation of the apical Mn-O bonds forces the nine-coordinate rock-salt site to be occupied preferentially by the smaller rare-earth-metal cations. This preferential occupation is reliably obtained from the X-ray refinement. All three title phases show a magnetoresistance ratio of about 4(corresponding to a magnetoresistance, [R(0)-R(H)]/R(0), of about 75%) at a field of 7 T and temperatures around 100 K.
Resumo:
We describe the solution combustion synthesis and characterization of La1-xKxMnO3 (0.0 <= x <= 0.25) perovskite phases, which is a low temperature initiated, rapid route to prepare metal oxides. As-synthesized compounds are amorphous in nature; crystallinity was observed on heating at 800 degrees C for 5 min. Structural parameters were determined by the Rietveld refinement method using powder XRD data. Parent LaMnO3 compound crystallizes in the orthorhombic structure (space group Pbnm, No. 62). Potassium substituted compounds were crystallized with rhombohedral symmetry (space group R-3c, No. 167). The ratio of the Mn3+/Mn4+ was determined by the iodometric titration. The Fourier transform infrared spectrum (FTIR) shows two absorption bands for Mn-O stretching vibration (v, mode), Mn-O-Mn deformation vibration (v(b) mode) around 600 cm(-1) and 400 cm(-1) for the compositions, x = 0.0, 0.05 and 0-10. Four-probe electrical resistivity measurements reveal a composition controlled metal to insulator transition (TM-1), the maximum TM-1 was observed for the composition La0.85K0.15MnO3 at 287 K. Room temperature vibrating sample magnetometer data indicate that for the composition up to x = 0-10, the compounds are paramagnetic whereas composition with x = 0.15, 0.20 and 0.25 show magnetic moments of 27, 29 and 30 emu/g, respectively.
Resumo:
The structures of (1 - x) Na0.5Bi0.5TiO3-(x) CaTiO3 at room temperature have been investigated using neutron powder diffraction and dielectric studies. The system exhibits an orthorhombic (Pbnm) structure for x >= 0.15 and rhombohedral (R3c) for x <= 0.05. For x = 0.10, though the neutron diffraction pattern shows features of the orthorhombic (Pbnm) structure, Rietveld refinement using this structure shows a drastic reduction in the in-phase tilt angle (similar to 4 degrees) as compared to the corresponding value (similar to 8 degrees) for a neighbouring composition x = 0.15. The neutron diffraction pattern of x = 0.10 could be fitted equally well using a two-phase model (R3c + Pbnm) with orthorhombic as the minor phase (22%), without the need for a drastic decrease in the in-phase tilt angle. The dielectric studies of x = 0.10 revealed the presence of the polar R3c phase, thereby favouring the phase coexistence model, instead of a single-phase Pbnm structure, for this composition.
Resumo:
We describe the synthesis and structure of Barium sulfate nanoparticles by precipitation method in the presence of water soluble inorganic stabilizing agent, sodium hexametaphosphate, (NaPO3)(6). The structural parameters were refined by the Rietveld refinement method using powder X-ray diffraction data. Barium sulfate nanoparticles were crystallized in the orthorhombic structure with space group Pbnm (No. 62) having the lattice parameters a = 7.215(1) (angstrom), b = 8.949(1) (angstrom) and c = 5.501 (1) (angstrom) respectively. Transmission electron microscopy study reveals that the nanoparticles are size range, 30-50 nm. Fourier transform infrared spectra showed distinct absorption due to the SO42- moiety at 1115 and 1084 cm(-1) indicating formation of barium sulfate nanoparticles free from the phosphate group from the stabilizer used in the synthesis. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A simple and efficient two-step hybrid electrochemical-thermal route was developed for the synthesis of large quantity of ZnO nanoparticles using aqueous sodium bicarbonate electrolyte and sacrificial Zn anode and cathode in an undivided cell under galvanostatic mode at room temperature. The bath concentration and current density were varied from 30 to 120 mmol and 0.05 to 1.5 A/dm(2). The electrochemically generated precursor was calcined for an hour at different range of temperature from 140 to 600 A degrees C. The calcined samples were characterized by XRD, SEM/EDX, TEM, TG-DTA, FT-IR, and UV-Vis spectral methods. Rietveld refinement of X-ray data indicates that the calcined compound exhibits hexagonal (Wurtzite) structure with space group of P63mc (No. 186). The crystallite sizes were in the range of 22-75 nm based on Debye-Scherrer equation. The TEM results reveal that the particle sizes were in the order of 30-40 nm. The blue shift was noticed in UV-Vis absorption spectra, the band gaps were found to be 5.40-5.11 eV. Scanning electron micrographs suggest that all the samples were randomly oriented granular morphology.
Resumo:
The structures of TlSr(2−x)LaxCuO(5+δ), with x=0.5, 0.75 and 1, and Tl.5Pb0.5Sr2CuO(5+δ) have been examined with X-ray and neutron powder Rietveld refinement. They are isostructural (P4/mmm) with the corresponding thallium-barium cuprate having one Cu-O layer with Cu3+ ions in octahedral coordination with oxygen (structure type 1201). The influence of cation substitution and disorder on the structure and superconducting properties of these phases have been investigated. La3+ substitution for Sr2+ stabilises the structure and reduces Cu3+, permitting superconductivity, while Pb2+ substitution for Tl3+ only stabilises the structure, without reducing Cu3+.
Resumo:
Spherical and rod like nanocrystalline Nd2O3 phosphors have been prepared by solution combustion and hydrothermal methods respectively The Powder X-ray diffraction (PXRD) results confirm that hexagonal A-type Nd2O3 has been obtained with calcination at 900 C for 3 h and the lattice parameters have been evaluated by Rietveld refinement Surface morphology of Nd2O3 phosphors show the formation of nanorods in hydrothermal synthesis whereas spherical particles in combustion method TEM results also confirm the same Raman studies show major peaks which are assigned to F-g and combination of A(g) + E-g modes The PL spectrum shows a series of emission bands at similar to 326-373 nm (UV) 421-485 nm (blue) 529-542 nm (green) and 622 nm (red) The UV blue green and red emission in the PL spectrum indicates that Nd2O3 nanocrystals are promising for high performance materials and white light emitting diodes (LEDs) (C) 2010 Elsevier B V All rights reserved
Resumo:
Monophasic CaNaBi2Nb3O12 powders were synthesized via the conventional solid-state reaction route. Rietveld refinement of the X-ray powder diffraction (XRD) data and selected area electron diffraction (SAED) studies confirmed the phase to be a three-layer Aurivillius oxide associated with an orthorhombic B2cb space group. The dielectric properties of the ceramics have been studied in the 300-800 K temperature range at various frequencies (1 kHz to 1 MHz). A dielectric anomaly was observed at 676 K for all the frequencies corresponding to the ferroelectric to paraelectric phase transition as it was also corroborated by the high temperature X-ray diffraction studies. The incidence of the polarization-electric field (P vs. E) hysteresis loop demonstrated CaNaBi2Nb3O12 to be ferroelectric.
Resumo:
Following considerations of geometry and the similarity between chromate and carbonate groups in terms of size and charge, we have investigated the possibility of replacing the two-coordinate Cu-I in superconducting lead cuprates of the general formula Pb2Sr2(Ca, Y)CU3O8 by Cr. A high-resolution electron microscopy study coupled with energy dispersive X-ray analysis on small crystals of the title phases suggests that between 10 and 15% of the Cu-I can be replaced by Cr. While from the present structural study using HRTEM and Rietveld refinement of X-ray powder data we are unable to precisely obtain the oxidation state and oxygen coordination of Cr, we suggest in analogy with Cr substitution in other similar cuprates that in the title phases (CuO2)-O-I rods are partially replaced by tetrahedral CrO42- groups. Infrared spectroscopy supports the presence of CrO42- groups. The phases Pb1.75Sr2Ca0.2Y0.8O8+delta and Pb1.75Sr2Ca0.2Y0.8CCu2.85Cr0.15O8+delta are superconducting as-prepared, but the substitution of Cr for Cu-I results in a decrease of the Te as well as the superconducting volume fraction. (C) 1996 Academic Press, lnc.
Resumo:
Eu3+ (8 mol%) activated gadolinium oxide nanorods have been prepared by hydrothermal method without and with surfactant, cityl trimethyl ammonium bromide (CTAB). Powder X-ray diffraction (PXRD) studies reveal that the as-formed product is in hexagonal Gd(OH)(3):Eu phase and subsequent heat treatment at 350 and 600 degrees C transforms the sample to monoclinic GdOOH:Eu and cubic Gd2O3:Eu phases, respectively. The structural data and refinement parameters for cubic Gd2O3:Eu nanorods were calculated by the Rietveld refinement. SEM and TEM micrographs show that as-obtained Gd(OH)(3):Eu consists of uniform nanorods in high yield with uniform diameters of about 15 nm and lengths of about 50-150 nm. The temperature dependent morphological evolution of Gd2O3:Eu without and with CTAB surfactant was studied. FTIR studies reveal that CTAB surfactant plays an important role in converting cubic Gd2O3:Eu to hexagonal Gd(OH)(3):Eu. The strong and intense Raman peak at 489 cm(-1) has been assigned to A(g) mode, which is attributed to the hexagonal phase of Gd2O3. The peak at similar to 360 cm(-1) has been assigned to the combination of F-g and E-g modes, which is mainly attributed to the cubic Gd2O3 phase. The shift in frequency and broadening of the Raman modes have been attributed to the decrease in crystallite dimension to the nanometer scale as a result of phonon confinement. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Mo3O5(OH)(2)(AsO4)(2) was prepared at 100 degrees C from an aqueous solution of MoO3 containing arsenic and nitric acids. It crystallises in the monoclinic system, a = 13.024(1)Angstrom, b = 7.2974 (2) Angstrom, c = 13.281(1) Angstrom, beta = 121.124(8)degrees, Z = 4, space group C2/c. The structure was determined by Rietveld refinement from X-ray powder diffraction data. The three-dimensional structure is built up from MoO6 and MoO5OH octahedra and AsO4 tetrahedra sharing corners. The octahedra share two opposite vertices forming zigzag chains that run parallel to [10(1) over bar]. Each AsO4 tetrahedron is connected to four octahedra, two of which belong to the same chain, thus linking three chains. The resulting covalent framework is similar to that of beta VOPO4 in which one tetrahedral P site for every three is empty. The two protons are likely to be bonded to two (out of four) unshared oxygen atoms surrounding this empty site. All the Mo atoms are strongly off-centred in the octahedra; and the off-centring is disordered. The disorder is discussed in terms of Mo shifts perturbed by a disordered hydrogen bonding scheme.
Resumo:
The synthesis, structure and magnetic properties of mixed-metal oxides of ABO(3) composition in the La-B-V-O (B = Ni, Cu) systems are described in the present paper. While the B = Ni oxides adopt GdFeO3-like perovskite structure containing disordered nickel and vanadium at the octahedral B site, La3Cu2VO9 crystallizes in a YAlO3-type structure. A detailed investigation of the superstructure of nominal La3Cu2VO9 by WDS analysis and Rietveld refinement of powder XRD data reveal that the likely composition of the phase is La13Cu9V4O38.5, where the Cu and V atoms are ordered in a root13a(h) (a(h) = hexagonal a parameter of YAlO3-like subcell) superstructure. Magnetic susceptibility data support the proposed superstructure consisting of triangular Cu-3 clusters. At low temperatures, the magnetic moment corresponds to S = 1/2 per Cu-3 cluster, while at high temperatures the behavior is Curie-Weiss like, showing S = 1/2 per copper. The present work reveals the contrasting behavior of La-Cu-V-O and La-Ni-V-O systems: while a unique line-phase related to YAlO3 structure is formed around La3Cu2VO9 Composition in the copper system, a continuous series of perovskite-GdFeO3 solid solutions, LaNi1-xVxO3 for 0 less than or equal to x less than or equal to 1/3 seems to be obtained in the nickel system, where the oxidation state of nickel varies from 3+ to 2+.
Resumo:
Stoichiometric CrSi2 was prepared by arc melting and compacted by uniaxial hot pressing for property measurements. The crystal structure of CrSi2 was investigated using the powder x-ray diffraction method. From the Rietveld refinement, the lattice parameters were found to be a = 4.427 57 (7) and c = 6.368 04 (11) Å, respectively. The thermal expansion measurement revealed an anisotropic expansion in the temperature range from room temperature 800 K with αa = 14.58×10−6/K, αc = 7.51×10−6/K, and αV = 12.05×10−6/K. The volumetric thermal expansion coefficient shows an anomalous decrease in the temperature range of 450–600 K. The measured electrical resistivity ρ and thermoelectric power S have similar trends with a maxima around 550 K. Thermal conductivity measurements show a monotonic decrease with increasing temperature from a room temperature value of 10 W m−1 K−1. The ZT values increase with temperature and have a maximum value of 0.18 in the temperature range studied. An analysis of the electronic band structure is provided.
Resumo:
Layered LiNi0.8Co0.2O2 crystallizing in R (3) over barm space group is synthesized by decomposing the constituent metal-nitrate precursors. Oxidizing nature of metal nitrates stabilizes nickel in +3 oxidation state, enabling a high degree of cation ordering in the layered LiNi0.8Co0.2O2. The powder sample characterized by XRD Rietveld refinement reveals <2% Li-Ni site exchange in the layers. Scanning electron microscopic studies on the as-synthesized LiNi0.8Co0.2O2 sample reflect well defined particles of cubic morphology with particle size ranging between 200 and 250 nm. Cyclic voltammograms suggest that LiNi0.8Co0.2O2 undergoes phase transformation on first charge with resultant phase being completely reversible in subsequent cycles. The first-charge-cycle phase transition is further supported by impedance spectroscopy that shows substantial reduction in resistance during initial de-intercalation. Galvanostatic charge-discharge cycles reflect a first-discharge capacity of 184 mAh g(-1) which is stabilized at 170 mAh g(-1) over 50 cycles.