947 resultados para RESONANT FREQUENCIES
Resumo:
This thesis consists of two parts. In Part I, we develop a multipole moment formalism in general relativity and use it to analyze the motion and precession of compact bodies. More specifically, the generic, vacuum, dynamical gravitational field of the exterior universe in the vicinity of a freely moving body is expanded in positive powers of the distance r away from the body's spatial origin (i.e., in the distance r from its timelike-geodesic world line). The expansion coefficients, called "external multipole moments,'' are defined covariantly in terms of the Riemann curvature tensor and its spatial derivatives evaluated on the body's central world line. In a carefully chosen class of de Donder coordinates, the expansion of the external field involves only integral powers of r ; no logarithmic terms occur. The expansion is used to derive higher-order corrections to previously known laws of motion and precession for black holes and other bodies. The resulting laws of motion and precession are expressed in terms of couplings of the time derivatives of the body's quadrupole and octopole moments to the external moments, i.e., to the external curvature and its gradient.
In part II, we study the interaction of magnetohydrodynamic (MHD) waves in a black-hole magnetosphere with the "dragging of inertial frames" effect of the hole's rotation - i.e., with the hole's "gravitomagnetic field." More specifically: we first rewrite the laws of perfect general relativistic magnetohydrodynamics (GRMHD) in 3+1 language in a general spacetime, in terms of quantities (magnetic field, flow velocity, ...) that would be measured by the ''fiducial observers” whose world lines are orthogonal to (arbitrarily chosen) hypersurfaces of constant time. We then specialize to a stationary spacetime and MHD flow with one arbitrary spatial symmetry (e.g., the stationary magnetosphere of a Kerr black hole); and for this spacetime we reduce the GRMHD equations to a set of algebraic equations. The general features of the resulting stationary, symmetric GRMHD magnetospheric solutions are discussed, including the Blandford-Znajek effect in which the gravitomagnetic field interacts with the magnetosphere to produce an outflowing jet. Then in a specific model spacetime with two spatial symmetries, which captures the key features of the Kerr geometry, we derive the GRMHD equations which govern weak, linealized perturbations of a stationary magnetosphere with outflowing jet. These perturbation equations are then Fourier analyzed in time t and in the symmetry coordinate x, and subsequently solved numerically. The numerical solutions describe the interaction of MHD waves with the gravitomagnetic field. It is found that, among other features, when an oscillatory external force is applied to the region of the magnetosphere where plasma (e+e-) is being created, the magnetosphere responds especially strongly at a particular, resonant, driving frequency. The resonant frequency is that for which the perturbations appear to be stationary (time independent) in the common rest frame of the freshly created plasma and the rotating magnetic field lines. The magnetosphere of a rotating black hole, when buffeted by nonaxisymmetric magnetic fields anchored in a surrounding accretion disk, might exhibit an analogous resonance. If so then the hole's outflowing jet might be modulated at resonant frequencies ω=(m/2) ΩH where m is an integer and ΩH is the hole's angular velocity.
Resumo:
This work presents the development and investigation of a new type of concrete for the attenuation of waves induced by dynamic excitation. Recent progress in the field of metamaterials science has led to a range of novel composites which display unusual properties when interacting with electromagnetic, acoustic, and elastic waves. A new structural metamaterial with enhanced properties for dynamic loading applications is presented, which is named metaconcrete. In this new composite material the standard stone and gravel aggregates of regular concrete are replaced with spherical engineered inclusions. Each metaconcrete aggregate has a layered structure, consisting of a heavy core and a thin compliant outer coating. This structure allows for resonance at or near the eigenfrequencies of the inclusions, and the aggregates can be tuned so that resonant oscillations will be activated by particular frequencies of an applied dynamic loading. The activation of resonance within the aggregates causes the overall system to exhibit negative effective mass, which leads to attenuation of the applied wave motion. To investigate the behavior of metaconcrete slabs under a variety of different loading conditions a finite element slab model containing a periodic array of aggregates is utilized. The frequency dependent nature of metaconcrete is investigated by considering the transmission of wave energy through a slab, which indicates the presence of large attenuation bands near the resonant frequencies of the aggregates. Applying a blast wave loading to both an elastic slab and a slab model that incorporates the fracture characteristics of the mortar matrix reveals that a significant portion of the supplied energy can be absorbed by aggregates which are activated by the chosen blast wave profile. The transfer of energy from the mortar matrix to the metaconcrete aggregates leads to a significant reduction in the maximum longitudinal stress, greatly improving the ability of the material to resist damage induced by a propagating shock wave. The various analyses presented in this work provide the theoretical and numerical background necessary for the informed design and development of metaconcrete aggregates for dynamic loading applications, such as blast shielding, impact protection, and seismic mitigation.
Resumo:
Theoretical and experimental studies were conducted to investigate the wave induced oscillations in an arbitrary shaped harbor with constant depth which is connected to the open-sea.
A theory termed the “arbitrary shaped harbor” theory is developed. The solution of the Helmholtz equation, ∇2f + k2f = 0, is formulated as an integral equation; an approximate method is employed to solve the integral equation by converting it to a matrix equation. The final solution is obtained by equating, at the harbor entrance, the wave amplitude and its normal derivative obtained from the solutions for the regions outside and inside the harbor.
Two special theories called the circular harbor theory and the rectangular harbor theory are also developed. The coordinates inside a circular and a rectangular harbor are separable; therefore, the solution for the region inside these harbors is obtained by the method of separation of variables. For the solution in the open-sea region, the same method is used as that employed for the arbitrary shaped harbor theory. The final solution is also obtained by a matching procedure similar to that used for the arbitrary shaped harbor theory. These two special theories provide a useful analytical check on the arbitrary shaped harbor theory.
Experiments were conducted to verify the theories in a wave basin 15 ft wide by 31 ft long with an effective system of wave energy dissipators mounted along the boundary to simulate the open-sea condition.
Four harbors were investigated theoretically and experimentally: circular harbors with a 10° opening and a 60° opening, a rectangular harbor, and a model of the East and West Basins of Long Beach Harbor located in Long Beach, California.
Theoretical solutions for these four harbors using the arbitrary shaped harbor theory were obtained. In addition, the theoretical solutions for the circular harbors and the rectangular harbor using the two special theories were also obtained. In each case, the theories have proven to agree well with the experimental data.
It is found that: (1) the resonant frequencies for a specific harbor are predicted correctly by the theory, although the amplification factors at resonance are somewhat larger than those found experimentally,(2) for the circular harbors, as the width of the harbor entrance increases, the amplification at resonance decreases, but the wave number bandwidth at resonance increases, (3) each peak in the curve of entrance velocity vs incident wave period corresponds to a distinct mode of resonant oscillation inside the harbor, thus the velocity at the harbor entrance appears to be a good indicator for resonance in harbors of complicated shape, (4) the results show that the present theory can be applied with confidence to prototype harbors with relatively uniform depth and reflective interior boundaries.
Resumo:
A large portion of the noise in the light output of a laser oscillator is associated with the noise in the laser discharge. The effect of the discharge noise on the laser output has been studied. The discharge noise has been explained through an ac equivalent circuit of the laser discharge tube.
The discharge noise corresponds to time-varying spatial fluctuations in the electron density, the inverted population density and the dielectric permittivity of the laser medium from their equilibrium values. These fluctuations cause a shift in the resonant frequencies of the laser cavity. When the fluctuation in the dielectric permittivity of the laser medium is a longitudinally traveling wave (corresponding to the case in which moving striations exist in the positive column of the laser discharge), the laser output is frequency modulated.
The discharge noise has been analyzed by representing the laser discharge by an equivalent circuit. An appropriate ac equivalent circuit of a laser discharge tube has been obtained by considering the frequency spectrum of the current response of the discharge tube to an ac voltage modulation. It consist of a series ρLC circuit, which represents the discharge region, in parallel with a capacitance C', which comes mainly from the stray wiring. The equivalent inductance and capacitance of the discharge region have been calculated from the values of the resonant frequencies measured on discharge currents, gas pressures and lengths of the positive column. The experimental data provide for a set of typical values and dependencies on the discharge parameters for the equivalent inductance and capacitance of a discharge under laser operating conditions. It has been concluded from the experimental data that the equivalent inductance originates mainly from the positive column while the equivalent capacitance is due to the discharge region other than the positive column.
The ac equivalent circuit of the laser discharge has been shown analytically and experimentally to be applicable to analyzing the internal discharge noise. Experimental measurements have been made on the frequency of moving striations in a laser discharge. Its experimental dependence on the discharge current agrees very well with the expected dependence obtained from an analysis of the circuit and the experimental data on the equivalent circuit elements. The agreement confirms the validity of representing a laser discharge tube by its ac equivalent circuit in analyzing the striation phenomenon and other low frequency noises. Data have also been obtained for the variation of the striation frequency with an externally-applied longitudinal magnetic field and the increase in frequency has been attributed to a decrease in the equivalent inductance of the laser discharge.
Resumo:
A novel film bulk acoustic resonator (FBAR) with two resonant frequencies which have opposite reactions to temperature changes has been designed. The two resonant modes respond differently to changes in temperature and pressure, with the frequency shift being linearly correlated with temperature and pressure changes. By utilizing the FBAR's sealed back trench as a cavity, an on-chip single FBAR sensor suitable for measuring pressure and temperature simultaneously is proposed and demonstrated. The experimental results show that the pressure coefficient of frequency for the lower frequency peak of the FBAR sensors is approximately -17.4 ppm kPa-1, while that for the second peak is approximately -6.1 ppm kPa-1, both of them being much more sensitive than other existing pressure sensors. This dual mode on-chip pressure sensor is simple in structure and operation, can be fabricated at very low cost, and yet requires no specific package, therefore has great potential for applications. © 2012 IOP Publishing Ltd.
Resumo:
The use of changes in vibration properties for global damage detection and monitoring of existing concrete structures has received great research attention in the last three decades. To track changes in vibration properties experimentally, structures have been artificially damaged by a variety of scenarios. However, this procedure does not represent realistically the whole design-life degradation of concrete structures. This paper presents experimental work on a set of damaged reinforced concrete beams due to different loading regimes to assess the sensitivity of vibration characteristics. Of the total set, three beams were subject to incremental static loading up to failure to simulate overloading, and two beams subject to 15 million loading cycles with varying amplitudes to produce an accelerated whole-life degradation scenario. To assess the vibration behaviour in both cases, swept sine and harmonic excitations were conducted at every damage level. The results show that resonant frequencies are not sensitive enough to damage due to cyclic loading, whereas cosh spectral and root mean square distances are more sensitive, yet more scattered. In addition, changes in non-linearity follow a softening trend for beams under incremental static loading, whilst they are significantly inconsistent for beams under cyclic loading. Amongst all examined characteristics, changes in modal stiffness are found to be most sensitive to damage and least scattered, but modal stiffness is tedious to compute due mainly to the difficulty of constructing restoring force surfaces from field measurements. © (2013) Trans Tech Publications.
Resumo:
This paper investigates the design and modelling of an integrated device for acoustic resonance spectroscopy (ARS). Miniaturisation of such platforms can be achieved using MEMS technology thereby enabling scaling of device dimensions to investigate smaller specimens while simultaneously operating at higher frequencies. We propose an integrated device where the transducers are mounted in close proximity with the specimen to be analysed (e.g. by integrating ultrasound transducers within a microfluidic channel). A finite element (FE) model and a simplified analytical model have been constructed to predict the acoustic response of a sample embedded in such a device configuration. A FE simulation is performed in COMSOL by embedding the piezoelectric transducers in representative fluid media. Resonant frequencies associated with the measurement can be extracted from this data. The response of various media modelled through FEA matches with analytical predictions for a range of biological media. A variety of biological media may be identified by using the measured resonant frequencies as a signature of relevant physical characteristics. The paper establishes the modelling basis of an integrated acoustic resonant spectrometer that is then applied to examine the impact of geometrical scaling on system resolution. © 2013 IEEE.
Resumo:
The Pade approximation with Baker's algorithm is compared with the least-squares Prony method and the generalized pencil-of-functions (GPOF) method for calculating mode frequencies and mode Q factors for coupled optical microdisks by FDTD technique. Comparisons of intensity spectra and the corresponding mode frequencies and Q factors show that the Pade approximation can yield more stable results than the Prony and the GPOF methods, especially the intensity spectrum. The results of the Prony method and the GPOF method are greatly influenced by the selected number of resonant modes, which need to be optimized during the data processing, in addition to the length of the time response signal. Furthermore, the Pade approximation is applied to calculate light delay for embedded microring resonators from complex transmission spectra obtained by the Pade approximation from a FDTD output. The Prony and the GPOF methods cannot be applied to calculate the transmission spectra, because the transmission signal obtained by the FDTD simulation cannot be expressed as a sum of damped complex exponentials. (C) 2009 Optical Society of America
Resumo:
The eigenmode characteristics for equilateral triangle resonator (ETR) semiconductor microlasers are analysed by the finite-difference time-domain technique and the Pade approximation. The random Gaussian correlation function and sinusoidal function are used to model the side roughness of the ETR. The numerical results show that the roughness can cause the split of the degenerative modes, but the confined modes can still have a high quality factor. For the ETR with a 3 mum side length and the sinusoidal fluctuation, we can have a quality factor of 800 for the fundamental mode in the wavelength of 1500 nm, as the amplitude of roughness is 75 mn.
Resumo:
The eigenmodes confined in the equilateral triangle resonator (ETR) are analyzed by deriving the eigenvalues and the mode field distributions and by the finite difference time domain (FDTD) technique. The analytical results show that the one-period-length for the mode light rays inside the ETR is the perimeter of the ETR, and the number of transverse modes is limited by the condition of total internal reflection. In addition, the sum of the longitudinal mode index and the transverse mode index should be an even number, which limits the number of confined modes again. Based on the FDTD technique and the Pade approximation, we calculate the mode resonant frequencies and the quality factors from the local maximum and the width of the spectral distribution of the intensity The numerical results of mode frequencies agree very well with the analytical results, and the quality factor of the fundamental mode is usually higher than that of the higher order transverse modes. The results show that the ETR is suitable to realize single-made operation as semiconductor microcavity lasers.
Resumo:
The time delay for light transmission in a coupled microring waveguide structure is calculated from the phase shift of the transmission coefficient obtained by Pade approximation with Baker's algorithm from FDTD Output. The results show that the Pade approximation is a powerful tool for saving time in FDTD simulation.
Resumo:
The band structure of 2D photonic crystals (PCs) and localized states resulting from defects are analyzed by finite-difference time-domain (FDTD) technique and Pade approximation. The effect of dielectric constant contrast and filling factor on photonic bandgap (PBG) for perfect PCs and localized states in PCs with point defects are investigated. The resonant frequencies and quality factors are calculated for PCs with different defects. The numerical results show that it is possible to modulate the location, width and number of PBGs and frequencies of the localized states only by changing the dielectric constant contrast and filling factor.
Resumo:
Control of machines that exhibit flexibility becomes important when designers attempt to push the state of the art with faster, lighter machines. Three steps are necessary for the control of a flexible planet. First, a good model of the plant must exist. Second, a good controller must be designed. Third, inputs to the controller must be constructed using knowledge of the system dynamic response. There is a great deal of literature pertaining to modeling and control but little dealing with the shaping of system inputs. Chapter 2 examines two input shaping techniques based on frequency domain analysis. The first involves the use of the first deriviate of a gaussian exponential as a driving function template. The second, acasual filtering, involves removal of energy from the driving functions at the resonant frequencies of the system. Chapter 3 presents a linear programming technique for generating vibration-reducing driving functions for systems. Chapter 4 extends the results of the previous chapter by developing a direct solution to the new class of driving functions. A detailed analysis of the new technique is presented from five different perspectives and several extensions are presented. Chapter 5 verifies the theories of the previous two chapters with hardware experiments. Because the new technique resembles common signal filtering, chapter 6 compares the new approach to eleven standard filters. The new technique will be shown to result in less residual vibrations, have better robustness to system parameter uncertainty, and require less computation than other currently used shaping techniques.
Resumo:
Experimental results at X-band are used to compare the electromagnetic scattering from a printed reflectarray cell, which is constructed on 500 mu m thick layers of three different nematic state liquid crystals. It is shown that a small voltage can be used to vary the permittivity of the tunable substrate and thereby control the phase of the reflected signals. Numerical results using Ansoft HFSS are compared with the measured phase, resonant frequencies and signal attenuation for two orientations of the liquid crystal molecules. Data fitting is employed to quantify the loss tangent and the permittivity values of the three anisotropic specimens. The performance trade-offs that are imposed by the use of commercially available materials are discussed, and the computer model is used to specify the electrical properties of a liquid crystal mixture, which can provide a signal loss of <1 dB and a dynamic phase range of 300 degrees from the patch elements at 10 GHz.
Resumo:
The drive towards cleaner industrial processes has led to the development of room temperature ionic liquids (RTIL) as environmentally friendly solvents. They comprise solely of ions which are liquid at room temperature and with over one million simple RTIL alone it is important to characterize their physical properties using minimal sample volumes. Here we present a dual Quartz Crystal Microbalance (QCM) which allows separate determination of viscosity and density using a total sample volume of only 240 mu L. Liquid traps were fabricated on the sensing area of one QCM using SU-8 10 polymer with a second QCM having a flat surface. Changes in the resonant frequencies were used to extract separate values for viscosity and density. Measurements of a range of pure RTIL with minimal water content have been made on five different trap designs. The best agreement with measurements from the larger volume techniques was obtained for trap widths of around 50 pm thus opening up the possibility of integration into lab-on-a-chip systems.