946 resultados para RESONANCE FREQUENCY-ANALYSIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Index-flood related regional frequency analysis (RFA) procedures are in use by hydrologists to estimate design quantiles of hydrological extreme events at data sparse/ungauged locations in river basins. There is a dearth of attempts to establish which among those procedures is better for RFA in the L-moment framework. This paper evaluates the performance of the conventional index flood (CIF), the logarithmic index flood (LIF), and two variants of the population index flood (PIF) procedures in estimating flood quantiles for ungauged locations by Monte Carlo simulation experiments and a case study on watersheds in Indiana in the U.S. To evaluate the PIF procedure, L-moment formulations are developed for implementing the procedure in situations where the regional frequency distribution (RFD) is the generalized logistic (GLO), generalized Pareto (GPA), generalized normal (GNO) or Pearson type III (PE3), as those formulations are unavailable. Results indicate that one of the variants of the PIF procedure, which utilizes the regional information on the first two L-moments is more effective than the CIF and LIF procedures. The improvement in quantile estimation using the variant of PIF procedure as compared with the CIF procedure is significant when the RFD is a generalized extreme value, GLO, GNO, or PE3, and marginal when it is GPA. (C) 2015 American Society of Civil Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper demonstrates the respective roles that combined index- and gain-coupling play in the overall link performance of distributed feedback (DFB) lasers. Their impacts on both static and dynamic properties such as slope efficiency, resonance frequency, damping rate, and chirp are investigated. Simulation results are compared with experimental data with good agreement. Transmission-oriented optimization is then demonstrated based on a targeted specification. The design tradeoffs are revealed, and it is shown that a modest combination of index- and gain-coupling enables optimum transmission at 10 Gbit/s.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The joint time-frequency analysis method is adopted to study the nonlinear behavior varying with the instantaneous response for a class of S.D.O.F nonlinear system. A time-frequency masking operator, together with the conception of effective time-frequency region of the asymptotic signal are defined here. Based on these mathematical foundations, a so-called skeleton linear model (SLM) is constructed which has similar nonlinear characteristics with the nonlinear system. Two skeleton curves are deduced which can indicate the stiffness and damping in the nonlinear system. The relationship between the SLM and the nonlinear system, both parameters and solutions, is clarified. Based on this work a new identification technique of nonlinear systems using the nonstationary vibration data will be proposed through time-frequency filtering technique and wavelet transform in the following paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drought frequency analysis can be performed with statistical techniques developed for determining recurrence intervals for extreme precipitation and flood events (Linsley et al 1992). The drought analysis method discussed in this paper uses the log-Pearson Type III distribution, which has been widely used in flood frequency research. Some of the difficulties encountered when using this distribution for drought analysis are investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sonochemical oxidation efficiency (eta(ox)) of a commercial titanium alloy ultrasound horn has been measured using potassium iodide as a dosimeter at its main resonance frequency (20 kHz) and two higher resonance frequencies (41 and 62 kHz). Narrow power and frequency ranges have been chosen to minimise secondary effects such as changing bubble stability, and time available for radical diffusion from the bubble to the liquid. The oxidation efficiency, eta(ox), is proportional to the frequency and to the power transmitted to the liquid (275 mL) in the applied power range (1-6 W) under argon. Luminol radical visualisation measurements show that the radical generation rate increases and a redistribution of radical producing zones is achieved at increasing frequency. Argon, helium, air, nitrogen, oxygen, and carbon dioxide have been used as saturation gases in potassium iodide oxidation experiments. The highest eta(ox) has been observed at 5 W under air at 62 kHz. The presence of carbon dioxide in air gives enhanced nucleation at 41 and 62 kHz and has a strong influence on eta(ox). This is supported by the luminol images, the measured dependence of eta(ox). on input power, and bubble images recorded under carbon dioxide. The results give insight into the interplay between saturation gas and frequency, nucleation, and their effect on eta(ox). (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An algorithm based only on the impedance cardiogram (ICG) recorded through two defibrillation pads, using the strongest frequency component and amplitude, incorporated into a defibrillator could determine circulatory arrest and reduce delays in starting cardiopulmonary resuscitation (CPR). Frequency analysis of the ICG signal is carried out by integer filters on a sample by sample basis. They are simpler, lighter and more versatile when compared to the FFT. This alternative approach, although less accurate, is preferred due to the limited processing capacity of devices that could compromise real time usability of the FFT. These two techniques were compared across a data set comprising 13 cases of cardiac arrest and 6 normal controls. The best filters were refined on this training set and an algorithm for the detection of cardiac arrest was trained on a wider data set. The algorithm was finally tested on a validation set. The ICG was recorded in 132 cardiac arrest patients (53 training, 79 validation) and 97 controls (47 training, 50 validation): the diagnostic algorithm indicated cardiac arrest with a sensitivity of 81.1% (77.6-84.3) and specificity of 97.1% (96.7-97.4) for the validation set (95% confidence intervals). Automated defibrillators with integrated ICG analysis have the potential to improve emergency care by lay persons enabling more rapid and appropriate initiation of CPR and when combined with ECG analysis they could improve on the detection of cardiac arrest.