998 resultados para REDOX BEHAVIOR
Resumo:
A stable, well-behaved self-assembled monolayer (SAM) of viologen-functionalized thiol was used to immobilize and electrically connect horseradish peroxidase (HRP) at gold electrode. Viologen groups in SAMs facilitated the electron transfer from the electrode to the protein active site so that HRP exhibited a quasi-reversible redox behavior. HRP adsorbed in the SAMs is very stable, and close to a monolayer with the surface coverage of 6.5 x 10(-11) mol/cm(2). The normal potential of HRP is -580 mV vs Ag/AgCl corresponding to ferri/ferro active center and the standard electron transfer rate constant is 3.41 s(-1) in 0.1 M phosphate buffer solution (pH 7.1). This approach shows a great promise for designing enzyme electrodes with other redox proteins and practical use in tailoring a variety of amperometric biosensor devices. Copyright (C) 1997 Elsevier Science Ltd.
Resumo:
Two novel alkynyl-bridged symmetric bis-tridentate ligands 1,2-bis(1'-[4'-(2,2':6', 2 ''-terpyridinyl)]-ferrocenyl)ethyne (3a; tpy-Fc-C C-Fc-tpy; Fc = ferrocenyl; tpy = terpyridyl) and 1,4-bis(1'-[4'-(2,2':6', 2 ''-terpyridinyl)]ferrocenyl)-1,3-butadiyne (3b; tpy-Fc-C C-C C-Fc-tpy) and their Ru2+ complexes 6a and 6b have been synthesized and characterized by cyclic voltammetry, UV-vis and luminescence spectroscopy, and in the case of 3b by single-crystal X-ray diffraction. Cyclic voltammograms of both compounds, 3a and 3b, display two severely overlapping ferrocene-based oxidative peaks with only one reductive peak. The redox behavior of 6a and 6b is dominated by the Ru2+/Ru3+ redox couple (E-1/2 from 1.33 to 1.34 V), the Fe2+/Fe3+ redox couples (E-1/2 from 0.46 to 0.80 V), and the tpy/tpy(-)/tpy(2-)redox couples (E-1/2 from -1.19 to -1.48 V). The UV-vis spectra of 6a and 6b show absorption bands assigned to the (1)[(d(pi)(Fe))(6)] -> (1)[(d(pi)(Fe))(5)(pi*(Ru)(tpy))(1)] MMLCT transition at similar to 555 nm. Complexes 6a and 6b are luminescent in H2O-CH3CN (4 : 1, v/v) solution at room temperature, and 6b exhibits the strongest luminescence intensity (lambda(em)(max): 710 nm, Phi(em): 2.28 x 10(-4), tau: 358 ns) relative to analogous ferrocene-based bis(terpyridine) Ru(II) complexes reported so far.
Resumo:
La polyvalence de la réaction de couplage-croisé C-N a été explorée pour la synthèse de deux nouvelles classes de ligands: (i) des ligands bidentates neutres de type N^N et (ii) des ligands tridentates neutres de type N^N^N. Ces classes de ligands contiennent des N-hétérocycles aromatiques saturés qui sont couplés avec hexahydropyrimidopyrimidine (hpp). Les ligands forment de cycles à six chaînons sur la coordination du centre Ru(II). Ce fait est avantageux pour améliorer les propriétés photophysiques des complexes de polypyridyl de Ru(II). Les complexes de Ru(II) avec des ligands bidentés ont des émissions qui dépendent de la basicité relative des N-hétérocycles. Bien que ces complexes sont électrochimiquement et photophysiquement attrayant, le problème de la stereopurité ne peut être évité. Une conception soigneuse du type de ligand nous permet de synthétiser un ligand bis-bidentate qui est utile pour surmonter le problème de stereopurité. En raison de la spécialité du ligand bis-bidentate, son complexe diruthénium(II,II) présente une grande diastéréosélectivité sans séparation chirale. Alors que l'unité de hpp agit comme un nucléophile dans le mécanisme de C-N réaction de couplage croisé, il peut également agir en tant que groupe partant, lorsqu'il est activé avec un complexe de monoruthenium. Les complexes achiraux de Ru(II) avec les ligands tridentés présentent des meilleures propriétés photophysiques en comparason avec les prototypes [Ru(tpy)2]2+ (tpy = 2,2′: 6′, 2′′-terpyridine). L’introduction de deux unités de hpp dans les ligands tridentates rend le complexe de Ru(II) en tant que ‘absorbeur noir’ et comme ‘NIR émetteur’ (NIR = de l’anglais, Near Infra-Red). Cet effet est une conséquence d'une meilleure géométrie de coordination octaédrique autour de l'ion Ru(II) et de la forte donation sigma des unités hpp. Les complexes du Re(I) avec des ligands tridentates présentent un comportement redox intéressant et ils émettent dans le bleu. L'oxydation quasi-réversible du métal est contrôlée par la donation sigma des fragments hpp, tandis que la réduction du ligand est régie par la nature électronique du motif N-hétérocycle central du ligand lui-même. Cette thèse presente également l'auto-assemblage des métal-chromophores comme ‘métallo-ligands’ pour former des espèces supramoléculaires discretes utilisant des complexes neutres. Les synthèses et propriétés des métaux-chromophores précités et les supramolécules sont discutées.
Resumo:
This study concentrates the chemical properties of hydrazones due to its chelating capability and their pharmacological applications. Studies cover the preparation of different acid hydrazones and their structural studies and studies on their antimicrobial activity, synthesis and spectral characterization of different complexes of copper oxovanadium, manganese, nickel etc. Effect of incorporation of heterocyclic bases to the coordination sphere, change in the biological activity of acid hydrazones upon coordination, development of X-ray quality single crystals and its X-ray diffraction studies, studies on the redox behavior of the coordinated metal ions and correlation between the stereochemistry and biological activities.
Resumo:
Spinel systems with the composition of Cu 1−x Zn x Cr 2 O 4 [x = 0 CCr, x = 0.25 CZCr-1, x = 0.5 CZCr-2, x = 0.75 CZCr-3 and x = 1 ZCr] were prepared by homogeneous co-precipitation method and were characterized by X-ray diffraction (XRD) and FT-IR spectroscopy. Elemental analysis was done by EDX, and surface area measurements by the BET method. The redox behavior of these catalysts in cyclohexane oxidation at 243 K using TBHP as oxidant was examined. Cyclohexanone was the major product over all catalysts with some cyclohexanol. 69.2% selectivity to cyclohexanol and cyclohexanone at 23% conversion of cyclohexane was realized over zinc chromite spinels in 10 h.
Resumo:
The present work reports the chemistry of a few oxidovanadium(IV) and (V) complexes of the ONS chelating ligand S-benzyl-beta-N-(2-hydroxyphenylethylidine) dithiocarbazate (H2L). Major objective of this work is to arrive at some general conclusions about the influence of binding environment generated by the replacement of an O-donor center by a S-donor point in a ligand (of a similar arrangement of the other O- and N-donor points) on the redox behavior and on the structural features of comparable [VO(OEt)(ONS)] and [VO(OEt)(ONO)] complexes. Synthesis, characterization by various physicochemical techniques (UV-Vis, IR, EPR and elemental analysis), exploration of electrochemical activity of the oxidovanadium(V) complex [(VO)-O-V(OEt) L] (1), the mixed ligand complex [(VO)-O-V(N-O)L] (3) (where N-O is the mono anion of 8-hydroxyquinoline) and a binuclear complex [(VO)-O-V(OEt)L](2)(mu-4,4'-bipy) (2) are reported. Similar studies on of mixed ligand oxidovanadium(IV) complexes of the formula [(VO)-O-V(N-N)L] (4,5) (where N-N = 2,2'-bipy and o-phen) are also presented here. The [(VO)-O-V(OEt)L] complex is pentacoordinated and distorted square pyramidal, while the [V-IV(N-N)L] complexes are hexacoordinated and octahedral. Structural features of the complex 1 were compared with the corresponding aspects of the previously reported analogous complex [(VO)-O-V(OEt)(ONO)] (1').
Resumo:
This work reports the ligational behavior of the neutral bidentate chelating molecule 2-(3,5-dimethyl pyrazol-1-yl) benzothiazole towards the oxomolybdenum(V) center. Both mononuclear complexes of the type (MoOX3L)-O-V and binuclear complexes of the formula (Mo2O4X2L2)-O-V (where X = Cl, Br) are isolated in the solid state. The complexes are characterized by elemental analyses, various spectroscopic techniques (UV-Vis IR), magnetic susceptibility measurement at room temperature, and cyclic voltammetry for their redox behavior at a platinum electrode in CH3CN. The mononuclear complexes (MoOX3L)-O-V are found to be paramagnetic while the binuclear complexes Mo2O4X2L2 are diamagnetic. Crystal and molecular structure of the ligand and the dioxomolybdenum complex (MoO2Br2L)-O-VI (obtained from the complex MoOBr3L during crystallization) have been solved by single crystal X-ray diffraction technique. Relevant DFT calculations of the ligand and the complex (MoO2Br2L)-O-VI are also carried out.
Resumo:
Nickel hydroxide can provide an outstanding cathode material in alkaline secondary batteries, however the progressive decrease of the charge capacity as a function of the number of oxidation/reduction cycles is a challenging problem to be solved. New improvements on the electrochemical properties of electrode materials can be achieved by exploiting the much better performance of alpha-nickel hydroxide. Such materials were obtained in a stable form by sol-gel method and characterized by thermogravimetric analyses, UV-Vis spectroscopy, X-ray diffractometry, scanning and transmission electron microscopy, cyclic voltammetry and electrochemical quartz crystal microbalance techniques. The results revealed not only the formation of the alpha-Ni(OH)(2) phase, but also a much better electrochemical reversibility and stability as compared with similar materials obtained by electrochemical precipitation method.
Resumo:
Curcumin possesses wide-ranging anti-inflammatory and anti-cancer properties and its biological activity can be linked to its potent antioxidant capacity. Superparamagnetic maghemite (gamma-Fe2O3), called surface-active maghemite nanoparticles (SAMNs) were surface-modified with curcumin molecules, due to the presence of under-coordinated Fe-III atoms on the nanoparticle surface. The so-obtained curcumin-modified SAMNs (SAMN@curcumin) had a mean size of 13 +/- 4 nm. SAMN@curcumin was characterized by transmission and scanning electron microscopy, UV/Vis, FTIR, and Mossbauer spectroscopy, X-ray powder diffraction, bulk susceptibility (SQUID), and relaxometry measurements (MRI imaging). The high negative contrast proclivity of SAMN@curcumin to act as potential contrast agent in MRI screenings was also tested. Moreover, the redox properties of bound curcumin were probed by electrochemistry. SAMN@curcumin was studied in the presence of different electroactive molecules, namely hydroquinone, NADH and ferrocyanide, to assess its redox behavior. Finally, SAMN@curcumin was electrochemically probed in the presence of hydrogen peroxide, demonstrating the stability and reactivity of bound curcumin.
Resumo:
Plutonium represents the major contribution to the radiotoxicity of spent nuclear fuel over storage times of up to several hundred thousand years. The speciation of plutonium in aquifer systems is important in order to assess the risks of high-level nuclear waste disposal and to acquire a deep knowledge of the mobilization and immobilization behavior of plutonium. In aqueous solutions, plutonium can coexist in four oxidation states and each one of them has different chemical and physical behavior. Tetravalent plutonium is the most abundant under natural conditions. Therefore, detailed speciation studies of tetravalent plutonium in contact with humic substances (HS) and kaolinite as a model clay mineral have been performed in this work. Plutonium is present in the environment at an ultratrace level. Therefore, speciation of Pu at the ultratrace level is mandatory. Capillary electrophoresis (CE) coupled to resonance ionization mass spectrometry (RIMS) was used as a new speciation method. CE-RIMS enables to improve the detection limit for plutonium species by 2 to 3 orders of magnitude compared to the previously developed CE-ICP-MS. For understanding the behavior of Pu(IV) in aqueous systems, redox reactions, complexation, and sorption behavior of plutonium were studied. The redox behavior of plutonium in contact with humic acid (HA) and fulvic acid (FA) was investigated. A relatively fast reduction of Pu(VI) in contact with HS was observed. It was mainly reduced to Pu(IV) and Pu(III) within a couple of weeks. The time dependence of the Pu(IV) complexation with Aldrich HA was investigated and a complex constant (logßLC) between 6.4 - 8.4 of Pu(IV) was determined by means of ultrafiltration taking into account the loading capacity (LC). The sorption of tetravalent plutonium onto kaolinite was investigated as a function of pH in batch experiments under aerobic and anaerobic conditions. The sorption edge was found at about pH = 1 and a maximum sorption at around pH = 8.5. In the presence of CO2 at pH > 8.5, the sorption of plutonium was decreased probably due to the formation of soluble carbonate complexes. For comparison, the sorption of Th(IV) onto kaolinite was also investigated and consistent results were found. The Pu(IV) sorption onto kaolinite was studied by XANES and EXAFS at pH 1, 4, 9 and the sorbed species on kaolinite surface was Pu(IV). Depending on the pH, only 1 - 10 % of the sorbed plutonium is desorbed from kaolinite and released into a fresh solution at the same pH value. Furthermore, the sorption of HS onto kaolinite was studied as a function of pH at varying concentrations of HS, as a prerequisite to understand the more complex ternary system. The sorption of HA onto kaolinite was found to be higher than that of FA. The investigation of the ternary systems (plutonium-kaolinite-humic substances) is performed as a function of pH, concentration of HS, and the sequences of adding the reactants. The presence of HS strongly influences the sorption of Pu(IV) onto kaolinite over the entire pH range. For comparison, the influence of HS on the sorption of Th(IV) onto kaolinite was also investigated and a good agreement with the results of Pu(IV) was obtained.
Resumo:
This thesis work has been carried out during the Erasmus exchange period at the “Université Paris 6 – Pierre et Marie Curie”, in the “Edifices PolyMétalliques – EPOM” team, leaded by Prof. Anna Proust, belonging to the “Institut Parisien de Chimie Moléculaire”, under the supervision of Dr. Guillaume Izzet and Dr. Geoffroy Guillemot. The redox properties of functionalized Keggin and Dawson POMs have been exploited in photochemical, catalytic and reactivity tests. For the photochemical purposes, the selected POMs have been functionalized with different photoactive FGs, and the resulting products have been characterized by CV analyses, luminescence tests and UV-Vis analyses. In future, these materials will be tested for hydrogen photoproduction and polymerization of photoactive films. For the catalytic purposes, POMs have been firstly functionalized with silanol moieties, to obtain original coordination sites, and then post-functionalized with TMs such as V, Ti and Zr in their highest oxidation states. In this way, the catalytic properties of TMs were coupled to the redox properties of POM frameworks. The redox behavior of some of these hybrids has been studied by spectro-electrochemical and EPR methods. Catalytic epoxidation tests have been carried out on allylic alcohols and n-olefins, employing different catalysts and variable amounts of them. The performances of POM-V hybrids have been compared to those of VO(iPrO)3. Finally, reactivity of POM-VIII hybrids has been studied, using styrene oxide and ethyl-2-diazoacetate as substrates. All the obtained products have been analyzed via NMR techniques. Cyclovoltammetric analyses have been carried out in order to determine the redox behavior of selected hybrids.
Resumo:
Electrochemical reactivity and structure properties of electrogenic bacteria, Geobacter sulfurreducens (Gs) were studied to explore the heterogeneous electron transfer at the bacteria/electrode interface using electrochemical and in-situ spectroscopic techniques. The redox behavior of Gs adsorbed on a gold electrode, which is modified with a ω-functionalized self-assembled monolayer (SAM) of alkanethiols, depends strongly on the terminal group. The latter interacts directly with outermost cytochromes embedded into the outer membrane of the Gs cells. The redox potential of bacterial cells bound electrostatically to a carboxyl-terminated SAM is close to that observed for bacteria attached to a bare gold electrode, revealing a high electronic coupling at the cell/SAM interface. The redox potentials of bacterial cells adsorbed on amino- and pyridyl-terminated SAMs are significantly different suggesting that the outermost cytochromes changes their conformation upon adsorption on these SAMs. No redox activity of Gs was found with CH3-, N(CH3)3+- and OH-terminated SAMs. Complementary in-situ spectroscopic studies on bacteria/SAMs/Au electrode assemblies were carried out to monitor structure changes of the bacterial cells upon polarization. Spectro-electrochemical techniques revealed the electrochemical turnover of the oxidized and reduced states of outer membrane cytochromes (OMCs) in Gs, providing evidence that the OMCs are responsible for the direct electron transfer to metal electrodes, such as gold or silver, during the electricity production. Furthermore, we observed spectroscopic signatures of the native structure of the OMCs and no conformational change during the oxidation/reduction process of the microorganisms. These findings indicate that the carboxyl-anchoring group provides biocompatible conditions for the outermost cytochromes of the Gs, which facilitate the heterogeneous electron transfer at the microorganism/electrode interface.
Resumo:
The effect of anions on the redox behavior and structure of 11-ferrocenyl-1-undecanethiol (FcC11) monolayers (SAM) on Au(1 1 1) single crystal and Au(1 1 1-25 nm) thin film electrodes was investigated in 0.1 M solutions of HPF6, HClO4, HBF4, HNO3, and H2SO4 by cyclic voltammetry (CV) and in situ surface-enhanced infrared reflection-absorption spectroscopy (SEIRAS). We demonstrate that the FcC11 redox peaks shift toward positive potentials and broaden with increasing hydrophilicity of the anions. In situ surface-enhanced IR-spectroscopy (SEIRAS) provided direct access for the incorporation of anions into the oxidized adlayer. The coadsorption of anions is accompanied by the penetration of water molecules. The latter effect is particularly pronounced in aqueous HNO3 and H2SO4 electrolytes. The adlayer permeability increases with increasing hydrophilicity of the anions. We also found that even the neutral (reduced) FcC11 SAM is permeable for water molecules. Based on the property of interfacial water to reorient upon charge inversion, we propose a spectroscopic approach for estimating the potential of zero total charge of the FcC11-modified Au(1 1 1) electrodes in aqueous electrolytes.
Resumo:
Iron oxides and arsenic are prevalent in the environment. With the increase interest in the use of iron oxide nanoparticles (IONPs) for contaminant remediation and the high toxicity of arsenic, it is crucial that we evaluate the interactions between IONPs and arsenic. The goal was to understand the environmental behavior of IONPs in regards to their particle size, aggregation and stability, and to determine how this behavior influences IONPs-arsenic interactions. ^ A variety of dispersion techniques were investigated to disperse bare commercial IONPs. Vortex was able to disperse commercial hematite nanoparticles into unstable dispersions with particles in the micrometer size range while probe ultrasonication dispersed the particles into stable dispersions of nanometer size ranges for a prolonged period of time. Using probe ultrasonication and vortex to prepare IONPs suspensions of different particle sizes, the adsorption of arsenite and arsenate to bare hematite nanoparticles and hematite aggregates were investigated. To understand the difference in the adsorptive behavior, adsorption kinetics and isotherm parameters were determined. Both arsenite and arsenate were capable of adsorbing to hematite nanoparticles and hematite aggregates but the rate and capacity of adsorption is dependent upon the hematite particle size, the stability of the dispersion and the type of sorbed arsenic species. Once arsenic was adsorbed onto the hematite surface, both iron and arsenic can undergo redox transformation both microbially and photochemically and these processes can be intertwined. Arsenic speciation studies in the presence of hematite particles were performed and the effect of light on the redox process was preliminary quantified. The redox behavior of arsenite and arsenate were different depending on the hematite particle size, the stability of the suspension and the presence of environmental factors such as microbes and light. The results from this study are important and have significant environmental implications as arsenic mobility and bioavailability can be affected by its adsorption to hematite particles and by its surface mediated redox transformation. Moreover, this study furthers our understanding on how the particle size influences the interactions between IONPs and arsenic thereby clarifying the role of IONPs in the biogeochemical cycling of arsenic.^
Resumo:
CuO supported on CeO2 and Ce0.9X0.1O2, where X is Zr, La, Tb or Pr, were synthesized using nitrate precursors, giving rise ceria based materials with a small particle size which interact with CuO species generating a high amount of interfacial sites. The incorporation of cations to the ceria framework modifies the CeO2 lattice parameter, improving the redox behavior of the catalytic system. The catalysts were characterized by X-ray fluorescence spectrometry (XRFS), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, thermoprogrammed reduction with H2 (H2-TPR) and X-ray photoelectron spectroscopy (XPS). The catalysts were tested in the preferential oxidation of CO under a H2-rich stream (CO-PROX), reaching conversion values higher than 95% between 115 and 140 °C and being the catalyst with 6 wt.% of Cu supported on Ce0.9Zr0.1O2 (sample 6CUZRCE) the most active catalyst. The influence of the presence of CO2 and H2O was also studied simulating a PROX unit, taking place a decrease of the catalytic activity due to the inhibitor effect both CO2 and H2O.