978 resultados para REACTION CHANNELS
Resumo:
The reactions induced by the weakly bound (6)Li projectile interacting with the intermediate mass target (59)Co were investigated. Light charged particles singles and alpha-d coincidence measurements were performed at the near barrier energies E(lab) = 17.4, 21.5, 25.5 and 29.6 MeV. The main contributions of the different competing mechanisms are discussed. A statistical model analysis. Continuum-Discretized Coupled-Channels (CDCC) calculations and two-body kinematics were used as tools to provide information to disentangle the main components of these mechanisms. A significant contribution of the direct breakup was observed through the difference between the experimental sequential breakup cross section and the CDCC prediction for the non-capture breakup cross section. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The complex reaction between VO2+ ((1)A(1)/(3)A) and C2H4 (Ag-1(g)/(3)A(1)) to yield VO+ ((1)Delta/(3)Sigma) and CH3CHO ('A'/(3)A) has been studied by means of B3LYP/6-31G* and B3LYP/6-311G(2d,p) calculations. The structures of all reactants, products, intermediates, and transition structures of this reaction have been optimized and characterized at the fundamental singlet and first excited triplet electronic states. Crossing points are localized, and possible spin inversion processes are discussed by means of the intrinsic reaction coordinate approach. Relevant stationary points along the most favorable reaction pathways have been studied at the CCSD/6-311G(2d,p)//B3LYP/6-311G(2d,p) calculation level. The theoretical results allow the development of thermodynamic and kinetic arguments about the reaction pathways of the title process. In the singlet state, the first step is the barrierless obtention of a reactant complex associated with the formation of a V-C bond, while in the triplet state a three-membered ring addition complex with the V bonded to the two C atoms is obtained. Similar behavior is found in the exit channels: the product complexes can be formed from isolated products without barriers. The reactant and product complexes are the most stable stationary points in the singlet and triplet electronic states. From the singlet state reactant complex, two reaction pathways are posssible to reach the triplet state product complex. (i) A mechanism in which a hydrogen transfer process is the first and rate limiting step and the second step is an oxygen transfer between vanadium and carbon atoms with a concomitant change in the spin state. The crossing point between singlet and triplet spin states is not kinetically relevant because it takes place at a later stage occurring in the exit channel. (ii) A mechanism in which the first stage renders a four-membered ring between vanadyl cation and the ethylene fragment and an oxygencarbon bond is formed; on going from this minimum to the second transition structure, associated with a carbon-vanadium bond breaking process, the crossing point between singlet and triplet spin states is reached. The final step is the hydrogen transfer between both carbon atoms to yield the product complex. In this case the spin change opens a lower barrier pathway. The transition structures with larger values of relative energies for both reactive channels of VO2+ ((1)A(1)) + C2H4 (Ag-1) --> VO+ ((3)Sigma) + CH3CHO ((1)A') present similar energies, and the two reaction pathways can be considered as competitive.
Resumo:
Calculations based on density functional theory have been carried out to investigate the free energy profiles at singlet and triplet electronic states associated with the gas-phase ion/molecule reactions of VO2++ ((1)A(1)/(3)A) with propene. The complex potential energy Surfaces, including Six reaction pathways (three dehydrogenation and three oxygen transfer processes), have been explored and analyzed. Along dehydrogenation reactive channels, three final products can be obtained: V(OH)(2)(+) ((1)Sigma(+)/(3)Sigma(-)) and allene (path Dehl), being the most kinetically and thermodynamically favorable reaction pathway, V(OH)(2)(+) ((1)Sigma(+)/(3)Sigma(-)) and propyne (path Deh2),and VO2+ ((1)A(1)/(3)A) and H-2 plus allene (path Deh3). The oxyoenation processes can yield its final products Vo(+) ((1)Delta/(3)Sigma) and acetone (path Ox1), VO+ ((1)Delta/(3)Sigma 2) and propanaldehyde (path Ox2), and VO+ ((1)Delta/(3)Sigma) and H-2 and propenaldehyde (path Ox3). Both paths Deh1 and Deh2 are associated with two consecutive hydrogen transfer processes from carbon atoms of the propene fragment to vanadyl oxygen atoms, while in path Deh3 the second hydrogen migration takes place to the vanadiurn atorn followed by the formation ola hydrogen molecule. Both paths Ox1 and Ox2 comprise an intramolecular hydrogen transfer between the ethylenic moiety of the propene fragment, while two consecutive hydrogen transfer processes take place from the propene fragment to oxygen and vanadium atoms of the vanadyl moiety along path Ox3. Three crossing points between both electronic states take place along path Deh1 (CP-Deh1) and path Deh2 (CP-Deh2) and in the entrance channel of oxidation processes (CP-Ox). A comparison with previous works on related reactions VO2+ + C2H4, VO2 + C2H6, and VO2+ + C3H8 allows us to rationalize the different reactivity patterns.
DFT study on the water-assisted mechanism for the reaction between VO+ and NH3 to yield VNH+ and H2O
Resumo:
On the basis of DFT calculations, an understanding on the catalytic effect of water in the dehydration reaction between VO+ and NH3 to yield VNH+ and H2O has been obtained. The Gibbs free energy profiles point out that the global process involves two consecutive hydrogen shifts from the nitrogen to the oxygen atom. The catalytic role is achieved by a water assisted mechanism in which water acts as proton donor and acceptor, via transition structures corresponding to a six-membered rings. The corresponding stationary points lie below both the entrance VO+ + NH3, and VNH+ + H2O, channels. (c) 2006 Elsevier B... All rights reserved.
Resumo:
Possible molecular mechanisms of the gas-phase ion/molecule reaction of VO2+ in its lowest singlet and triplet states ((1)A(1)/(3)A '') with propyne have been investigated theoretically by density functional theory (DFT) methods. The geometries, energetic values, and bonding features of all stationary and intersystem crossing points involved in the five different reaction pathways (paths 1-5), in both high-spin (triplet) and low-spin (singlet) surfaces, are reported and analyzed. The oxidation reaction starts by a hydrogen transfer from propyne molecule to the vanadyl complex, followed by oxygen migration to the hydrocarbon moiety. A hydride transfer process to the vanadium atom opens four different reaction courses, paths 1-4, while path 5 arises from a hydrogen transfer process to the hydroxyl group. Five crossing points between high- and low-spin states are found: one of them takes place before the first branching point, while the others occur along path 1. Four different exit channels are found: elimination of hydrogen molecule to yield propynaldehyde and VO+ ((1)Sigma/(3)Sigma); formation of propynaldehyde and the moiety V-(OH2)(+); and two elimination processes of water molecule to yield cationic products, Prod-fc(+) and Prod-dc(+) where the vanadium atom adopts a four- and di-coordinate structure, respectively.
Resumo:
The purpose of this study was to evaluate the macroscopy and microstructure of a double setting alpha-tricalcium phosphate bone cement sphere provided with interconnection channels (alpha-TCP-i), as well as the integration of the implant with the rabbits' orbital tissue, through macroscopic analysis and histopathology. The external and internal surfaces of the alpha-TCP-i were evaluated macroscopically and by electron microscopy. Twelve New Zealand rabbits received 12mm implants of alpha-TCP-i following enucleation of the left eye. The clinical assessment was undertaken daily during the first 15 days, followed by fortnightly assessment until the end of the study period. For the morphological analysis, exenteration was performed in 3 animals per experimental period (15, 45, 90 and 180 days). The external and internal surfaces of the implant appeared solid, smooth and compact, with six channels which interconnected centrally. The micro-architecture was characterized by the formation of columns of hexagonal crystals. No signs of infection, exposure, dehiscence of sutures or extrusion of the implant were noted in any of the animals during the entire period of the study. The morphological evaluation demonstrated the presence of a thin capsule around the implant, from whence appeared fibro-vascular projections, which penetrated it through the interconnecting channels. In the first days after the insertion of the implant, an intense inflammatory reaction was noted. At 180 days, however, there were no signs of inflammation. The alpha-tricalcium phosphate cement implant was well tolerated in this rabbit model and appeared to be relatively inert with some fibrovascular ingrowth through the large channels.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The crystal structures of cytochrome c oxidase from both bovine and Paracoccus denitrificans reveal two putative proton input channels that connect the heme-copper center, where dioxygen is reduced, to the internal aqueous phase. In this work we have examined the role of these two channels, looking at the effects of site-directed mutations of residues observed in each of the channels of the cytochrome c oxidase from Rhodobacter sphaeroides. A photoelectric technique was used to monitor the time-resolved electrogenic proton transfer steps associated with the photo-induced reduction of the ferryl-oxo form of heme a3 (Fe4+ = O2−) to the oxidized form (Fe3+OH−). This redox step requires the delivery of a “chemical” H+ to protonate the reduced oxygen atom and is also coupled to proton pumping. It is found that mutations in the K channel (K362M and T359A) have virtually no effect on the ferryl-oxo-to-oxidized (F-to-Ox) transition, although steady-state turnover is severely limited. In contrast, electrogenic proton transfer at this step is strongly suppressed by mutations in the D channel. The results strongly suggest that the functional roles of the two channels are not the separate delivery of chemical or pumped protons, as proposed recently [Iwata, S., Ostermeier, C., Ludwig, B. & Michel, H. (1995) Nature (London) 376, 660–669]. The D channel is likely to be involved in the uptake of both “chemical” and “pumped” protons in the F-to-Ox transition, whereas the K channel is probably idle at this partial reaction and is likely to be used for loading the enzyme with protons at some earlier steps of the catalytic cycle. This conclusion agrees with different redox states of heme a3 in the K362M and E286Q mutants under aerobic steady-state turnover conditions.
Resumo:
The sperm acrosome reaction is a Ca2+-dependent exocytotic event that is triggered by adhesion to the mammalian egg’s zona pellucida. Previous studies using ion-selective fluorescent probes suggested a role of voltage-sensitive Ca2+ channels in acrosome reactions. Here, whole-cell patch clamp techniques are used to demonstrate the expression of functional T-type Ca2+ channels during mouse spermatogenesis. The germ cell T current is inhibited by antagonists of T-type channels (pimozide and amiloride) as well as by antagonists whose major site of action is the somatic cell L-type Ca2+ channel (1,4-dihydropyridines, arylalkylamines, benzothiazapines), as has also been reported for certain somatic cell T currents. In sperm, inhibition of T channels during gamete interaction inhibits zona pellucida-dependent Ca2+ elevations, as demonstrated by ion-selective fluorescent probes, and also inhibits acrosome reactions. These studies directly link sperm T-type Ca2+ channels to fertilization. In addition, the kinetics of channel inhibition by 1,4-dihydropyridines suggests a mechanism for the reported contraceptive effects of those compounds in human males.
Resumo:
Ca2+ influx controls multiple neuronal functions including neurotransmitter release, protein phosphorylation, gene expression, and synaptic plasticity. Brain L-type Ca2+ channels, which contain either alpha 1C or alpha 1D as their pore-forming subunits, are an important source of calcium entry into neurons. Alpha 1C exists in long and short forms, which are differentially phosphorylated, and C-terminal truncation of alpha 1C increases its activity approximately 4-fold in heterologous expression systems. Although most L-type calcium channels in brain are localized in the cell body and proximal dendrites, alpha 1C subunits in the hippocampus are also present in clusters along the dendrites of neurons. Examination by electron microscopy shows that these clusters of alpha 1C are localized in the postsynaptic membrane of excitatory synapses, which are known to contain glutamate receptors. Activation of N-methyl-D-aspartate (NMDA)-specific glutamate receptors induced the conversion of the long form of alpha 1C into the short form by proteolytic removal of the C terminus. Other classes of Ca2+ channel alpha1 subunits were unaffected. This proteolytic processing reaction required extracellular calcium and was blocked by inhibitors of the calcium-activated protease calpain, indicating that calcium entry through NMDA receptors activated proteolysis of alpha1C by calpain. Purified calpain catalyzed conversion of the long form of immunopurified alpha 1C to the short form in vitro, consistent with the hypothesis that calpain is responsible for processing of alpha 1C in hippocampal neurons. Our results suggest that NMDA receptor-induced processing of the postsynaptic class C L-type Ca2+ channel may persistently increase Ca2+ influx following intense synaptic activity and may influence Ca2+-dependent processes such as protein phosphorylation, synaptic plasticity, and gene expression.
Resumo:
The process of liquid silicon infiltration is investigated for channels with radii from 0.25 to 0.75 [mm] drilled in compact carbon preforms. The advantage of this setup is that the study of the phenomenon results to be simplified. For comparison purposes, attempts are made in order to work out a framework for evaluating the accuracy of simulations. The approach relies on dimensionless numbers involving the properties of the surface reaction. It turns out that complex hydrodynamic behavior derived from second Newton law can be made consistent with Lattice-Boltzmann simulations. The experiments give clear evidence that the growth of silicon carbide proceeds in two different stages and basic mechanisms are highlighted. Lattice-Boltzmann simulations prove to be an effective tool for the description of the growing phase. Namely, essential experimental constraints can be implemented. As a result, the existing models are useful to gain more insight on the process of reactive infiltration into porous media in the first stage of penetration, i.e. up to pore closure because of surface growth. A way allowing to implement the resistance from chemical reaction in Darcy law is also proposed.
Resumo:
Purpose: Activation of the transient receptor potential channels, TRPC6, TRPM4, and TRPP1 (PKD2), has been shown to contribute to the myogenic constriction of cerebral arteries. In the present study we sought to determine the potential role of various mechanosensitive TRP channels to myogenic signaling in arterioles of the rat retina.
Methods: Rat retinal arterioles were isolated for RT-PCR, Fura-2 Ca2+ microfluorimetry, patch-clamp electrophysiology, and pressure myography studies. In some experiments, confocal immunolabeling of wholemount preparations was used to examine the localization of specific mechanosensitive TRP channels in retinal vascular smooth muscle cells (VSMCs).
Results: Reverse transcription-polymerase chain reaction analysis demonstrated mRNA expression for TRPC1, M7, V1, V2, V4, and P1, but not TRPC6 or M4, in isolated retinal arterioles. Immunolabeling revealed plasma membrane, cytosolic and nuclear expression of TRPC1, M7, V1, V2, V4, and P1 in retinal VSMCs. Hypoosmotic stretch-induced Ca2+ influx in retinal VSMCs was reversed by the TRPV2 inhibitor tranilast and the nonselective TRPP1/V2 antagonist amiloride. Inhibitors of TRPC1, M7, V1, and V4 had no effect. Hypoosmotic stretch-activated cation currents were similar in Na+ and Cs+ containing solutions suggesting no contribution by TRPP1 channels. Direct plasma membrane stretch triggered cation current activity that was blocked by tranilast and specific TRPV2 pore-blocking antibodies and mimicked by the TRPV2 activator, Δ9-tetrahydrocannabinol. Preincubation of retinal arterioles with TRPV2 blocking antibodies prevented the development of myogenic tone.
Conclusions: Our results suggest that retinal VSMCs express a range of mechanosensitive TRP channels, but only TRPV2 appears to contribute to myogenic signaling in this vascular bed.
Resumo:
Spider venoms contain neurotoxic peptides aimed at paralyzing prey or for defense against predators; that is why they represent valuable tools for studies in neuroscience field. The present study aimed at identifying the process of internalization that occurs during the increased trafficking of vesicles caused by Phoneutria nigriventer spider venom (PNV)-induced blood-brain barrier (BBB) breakdown. Herein, we found that caveolin-1α is up-regulated in the cerebellar capillaries and Purkinje neurons of PNV-administered P14 (neonate) and 8- to 10-week-old (adult) rats. The white matter and granular layers were regions where caveolin-1α showed major upregulation. The variable age played a role in this effect. Caveolin-1 is the central protein that controls caveolae formation. Caveolar-specialized cholesterol- and sphingolipid-rich membrane sub-domains are involved in endocytosis, transcytosis, mechano-sensing, synapse formation and stabilization, signal transduction, intercellular communication, apoptosis, and various signaling events, including those related to calcium handling. PNV is extremely rich in neurotoxic peptides that affect glutamate handling and interferes with ion channels physiology. We suggest that the PNV-induced BBB opening is associated with a high expression of caveolae frame-forming caveolin-1α, and therefore in the process of internalization and enhanced transcytosis. Caveolin-1α up-regulation in Purkinje neurons could be related to a way of neurons to preserve, restore, and enhance function following PNV-induced excitotoxicity. The findings disclose interesting perspectives for further molecular studies of the interaction between PNV and caveolar specialized membrane domains. It proves PNV to be excellent tool for studies of transcytosis, the most common form of BBB-enhanced permeability.
Resumo:
The ethanol oxidation reaction (EOR) is investigated on Pt/Au(hkl) electrodes. The Au(hkl) single crystals used belong to the [n(111)x(110)] family of planes. Pt is deposited following the galvanic exchange of a previously deposited Cu monolayer using a Pt(2+) solution. Deposition is not epitaxial and the defects on the underlying Au(hkl) substrates are partially transferred to the Pt films. Moreover, an additional (100)-step-like defect is formed, probably as a result of the strain resulting from the Pt and Au lattice mismatch. Regarding the EOR, both vicinal Pt/Au(hkl) surfaces exhibit a behavior that differs from that expected for stepped Pt; for instance, the smaller the step density on the underlying Au substrate, the greater the ability to break the CC bond in the ethanol molecule, as determined by in situ Fourier transform infrared spectroscopy measurements. Also, we found that the acetic acid production is favored as the terrace width decreases, thus reflecting the inefficiency of the surface array to cleave the ethanol molecule.
Resumo:
A temperature pause introduced in a simple single-step thermal decomposition of iron, with the presence of silver seeds formed in the same reaction mixture, gives rise to novel compact heterostructures: brick-like Ag@Fe3O4 core-shell nanoparticles. This novel method is relatively easy to implement, and could contribute to overcome the challenge of obtaining a multifunctional heteroparticle in which a noble metal is surrounded by magnetite. Structural analyses of the samples show 4 nm silver nanoparticles wrapped within compact cubic external structures of Fe oxide, with curious rectangular shape. The magnetic properties indicate a near superparamagnetic like behavior with a weak hysteresis at room temperature. The value of the anisotropy involved makes these particles candidates to potential applications in nanomedicine.