981 resultados para Quotient Modules


Relevância:

20.00% 20.00%

Publicador:

Resumo:

En la presente tesis doctoral se ha estudiado la integración del proceso de producción de hidrógeno con su purificación mediante el empleo de membranas selectivas de hidrógeno. La producción de hidrógeno se realiza empleando catalizadores no convencionales de níquel soportado sobre magnesia y alúmina en un reactor catalítico. Se analiza la actividad de los catalizadores y la producción de hidrógeno mediante distintos procesos con metano como son la oxidación parcial catalítica (OPC), OPC húmeda y reformadoLa purificación de hidrógeno se realiza en un módulo provisto de una membrana selectiva de hidrógeno de PdCu depositado en un soporte poroso cerámico. Una vez optimizada su preparación mediante deposición no electrolítica se caracterizan. Para ello se determina su permeabilidad a distintas temperaturas y realizando ciclos térmicos en atmósferas inerte y de hidrógeno, que puede fragilizar el metal. Una vez preparados los catalizadores y las membranas se integran los dos sistemas y se determinan los parámetros de operación óptimos como la presión de la línea de alimentación y el caudal de gas de arrastre en el módulo de membrana. Ambos parámetros se optimizan para lograr la máxima recuperación de hidrógeno en el módulo de membrana. Por últimos se realizan ensayos completos de producción y purificación, que permiten observar el rendimiento del sistema y también el efecto que los compuestos de la mezcla compleja alimentada a las membranas tienen en su comportamiento. Para concluir la integración de procesos se realizan ensayos añadiendo azufre de forma que el sistema sea más similar al proceso real. Esto permite también analizar el efecto del azufre tanto en los catalizadores como en las membranas.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A noncommutative 2-torus is one of the main toy models of noncommutative geometry, and a noncommutative n-torus is a straightforward generalization of it. In 1980, Pimsner and Voiculescu in [17] described a 6-term exact sequence, which allows for the computation of the K-theory of noncommutative tori. It follows that both even and odd K-groups of n-dimensional noncommutative tori are free abelian groups on 2n-1 generators. In 1981, the Powers-Rieffel projector was described [19], which, together with the class of identity, generates the even K-theory of noncommutative 2-tori. In 1984, Elliott [10] computed trace and Chern character on these K-groups. According to Rieffel [20], the odd K-theory of a noncommutative n-torus coincides with the group of connected components of the elements of the algebra. In particular, generators of K-theory can be chosen to be invertible elements of the algebra. In Chapter 1, we derive an explicit formula for the First nontrivial generator of the odd K-theory of noncommutative tori. This gives the full set of generators for the odd K-theory of noncommutative 3-tori and 4-tori.

In Chapter 2, we apply the graded-commutative framework of differential geometry to the polynomial subalgebra of the noncommutative torus algebra. We use the framework of differential geometry described in [27], [14], [25], [26]. In order to apply this framework to noncommutative torus, the notion of the graded-commutative algebra has to be generalized: the "signs" should be allowed to take values in U(1), rather than just {-1,1}. Such generalization is well-known (see, e.g., [8] in the context of linear algebra). We reformulate relevant results of [27], [14], [25], [26] using this extended notion of sign. We show how this framework can be used to construct differential operators, differential forms, and jet spaces on noncommutative tori. Then, we compare the constructed differential forms to the ones, obtained from the spectral triple of the noncommutative torus. Sections 2.1-2.3 recall the basic notions from [27], [14], [25], [26], with the required change of the notion of "sign". In Section 2.4, we apply these notions to the polynomial subalgebra of the noncommutative torus algebra. This polynomial subalgebra is similar to a free graded-commutative algebra. We show that, when restricted to the polynomial subalgebra, Connes construction of differential forms gives the same answer as the one obtained from the graded-commutative differential geometry. One may try to extend these notions to the smooth noncommutative torus algebra, but this was not done in this work.

A reconstruction of the Beilinson-Bloch regulator (for curves) via Fredholm modules was given by Eugene Ha in [12]. However, the proof in [12] contains a critical gap; in Chapter 3, we close this gap. More specifically, we do this by obtaining some technical results, and by proving Property 4 of Section 3.7 (see Theorem 3.9.4), which implies that such reformulation is, indeed, possible. The main motivation for this reformulation is the longer-term goal of finding possible analogs of the second K-group (in the context of algebraic geometry and K-theory of rings) and of the regulators for noncommutative spaces. This work should be seen as a necessary preliminary step for that purpose.

For the convenience of the reader, we also give a short description of the results from [12], as well as some background material on central extensions and Connes-Karoubi character.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A previously suggested birefringence-customized modular optical interconnect technique is extended for lens-free relay operation. Various lens-free relay imaging models are developed. We claim that the lens-free relay system is important in simplifying an optical interconnect system whenever the imaging conditions permit. To verify the validity of various proposed concepts, we experimentally implemented some 8 x 8 optical permutation modules. High-power efficiency and low channel cross talk were experimentally observed. In general, the larger the channel spacing, the less the cross talk. A quantitative cross-talk measurement of the lens-free relay system shows that, for a fixed channel width of 0.5 mm and channel spacings of 0.5, 1, and 2 mm, a less than -20-dB cross-talk performance can be guaranteed for lens-free relay distances of 40, 280, and 430 mm, respectively. (C) 1998 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel optoelectronic quotient-selected modified signed-digit division technique is proposed. This division method generates one quotient digit per iteration involving only one shift operation, one quotient selection operation and one addition/subtraction operation. The quotient digit can be selected by observing three most significant digits of the partial remainder independent of the divisor. Two algorithms based on truth-table look-up and binary logic operations are derived. For optoelectronic implementation, an efficient shared content-addressable memory based architecture as well as compact logic array processor based architecture with an electron-trapping device is proposed. Performance evaluation of the proposed optoelectronic quotient-selected division shows that it is faster than the previously reported convergence division approach. Finally, proof-of-principle experimental results are presented to verify the effectiveness of the proposed technique. (C) 2001 Society of Photo-Optical Instrumentation Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Riesz space with a Hausdorff, locally convex topology determined by Riesz seminorms is called a locally convex Riesz space. A sequence {xn} in a locally convex Riesz space L is said to converge locally to x ϵ L if for some topologically bounded set B and every real r ˃ 0 there exists N (r) and n ≥ N (r) implies x – xn ϵ rb. Local Cauchy sequences are defined analogously, and L is said to be locally complete if every local Cauchy sequence converges locally. Then L is locally complete if and only if every monotone local Cauchy sequence has a least upper bound. This is a somewhat more general form of the completeness criterion for Riesz – normed Riesz spaces given by Luxemburg and Zaanen. Locally complete, bound, locally convex Riesz spaces are barrelled. If the space is metrizable, local completeness and topological completeness are equivalent.

Two measures of the non-archimedean character of a non-archimedean Riesz space L are the smallest ideal Ao (L) such that quotient space is Archimedean and the ideal I (L) = { x ϵ L: for some 0 ≤ v ϵ L, n |x| ≤ v for n = 1, 2, …}. In general Ao (L) ᴝ I (L). If L is itself a quotient space, a necessary and sufficient condition that Ao (L) = I (L) is given. There is an example where Ao (L) ≠ I (L).

A necessary and sufficient condition that a Riesz space L have every quotient space Archimedean is that for every 0 ≤ u, v ϵ L there exist u1 = sup (inf (n v, u): n = 1, 2, …), and real numbers m1 and m2 such that m1 u1 ≥ v1 and m2 v1 ≥ u1. If, in addition, L is Dedekind σ – complete, then L may be represented as the space of all functions which vanish off finite subsets of some non-empty set.