999 resultados para Quinoxaline-2-carboxaldehyde


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two sets of Schiff base ligands, set-1 and set-2 have been prepared by mixing the respective diamine (1,2-propanediamine or 1,3-propanediamine) and carbonyl compounds (2-acetylpyridine or pyridine-2-carboxaldehyde) in 1:1 and 1:2 ratios, respectively and employed for the synthesis of complexes with Ni(II) perchlorate and Ni(II) thiocyanate. Ni(II) perchlorate yields the complexes having general formula [NiL2](ClO4)(2) (L = L-1 [N-1-(1-pyridin-2-yl-ethylidine)-propane-1,3-diamine] for complex 1, L-2 [N-1-pyridine-2-ylmethylene-propane1,3-diamine] for complex 2 or L-3 [N-1-(1-pyridine-2-yl-ethylidine)-propane-1,2-diamine] for complex 3) in which the Schiff bases are mono-condensed terdentate whereas Ni(II) thiocyanate results in the formation of tetradentate Schiff base complexes, [NiL](SCN)(2) (L=L-4 [N,N'-bis-(1-pyridine-2-yl-ethylidine)-propane-1,3-diamine] for complex 4, L-5 [NN'-bis(pyridine-2-ylmethyline)-propane-1, 3-diamine] for complex 5 or L-6 [NN'-bis-(1-pyridine-2-yl-ethylidine)-propane- 1, 2-diamine] for complex 6) irrespective of the sets of ligands used. Formation of the complexes has been explained by anion modulation of cation templating effect. All the complexes have been characterized by elemental analyses, spectral and electrochemical results. Single crystal X-ray diffraction studies confirm the structures of four representative members, 1, 3, 4 and 5; all of them have distorted octahedral geometry around Ni(II). The bis-complexes of terdentate ligands, I and 3 are the mer isomers and the complexes of tetradentate ligands, 4 and 5 possess trans geometry. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reaction of cis-Ru(bisox)(2)Cl-2, where bisox is 4,4,4',4'-tetramethyl-2,2'-bisoxazoline, with excess of pyridine-2-carboxaldehyde (py-2-al) in 1:1 (v/v) methanol-water mixture under nitrogen atmosphere and subsequent addition of excess of NH4PF6 give [Ru(bisox)(2)(py-2-al)](PF6)(2)center dot H2O (1). Refluxing of 1 in dehydrated methanol in presence of triethylamine yields the corresponding hemiacetalate complex: [Ru(bisox)(2) (pyridine-2-(alpha-methoxymethanolato))] PF6 center dot 1.5H(2)O (2). Both the complexes have been characterised by single crystal X-ray crystallography, FTIR and NMR. In cyclic voltammetry in acetonitrile at a glassy carbon electrode, 2 displays a quasireversible Ru(II/III) couple at 1.08 V versus NHE which is not observed in 1. A tentative mechanism is proposed for the conversion of 1 to 2. DFT calculations with the LanL2DZ basis set have been performed to investigate these observations theoretically. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two new reduced Schiff base ligands, [HL1 = 4-(2-[(pyridin-2-ylmethyl)-amino]-ethylimino)-pentan-2-one and HL2 =4-[2-(1-pyridin-2-yl-ethylamino)-ethylimino]-pentan-2-one] have been prepared by reduction of the corresponding tetradentate unsymmetrical schiff bases derived from 1.1: 1 condensation of 1,2-ethanediamine, acetylacetone and pyridine-2-carboxaldehyde/2-acetyl pyridine. Four complexes, [Ni(L-1)]ClO4 (1), [Cu(L-1)]ClO4 (2). [Ni(L-2)]ClO4 (3). and [Cu(L-2)]ClO4 (4) with these two reduced Schiff base ligands have been synthesized and structurally characterized by X-ray crystallography. The mono-negative ligands L-1 and L-2 are chelated in all four complexes through the four donor atoms to form square planar nickel(II) and copper(II) complexes Structures of 3 and 4 reveal that enantiomeric pairs are crystallized together with opposite chirality in the nitrogen and carbon atoms. The two Cu-II complexes (2 and 4) exhibit both irreversible reductive (Cu-II/Cu-II, E-pc. -1.00 and -1.04 V) and oxidative (Cu-II/CUII, E-pa, + 1.22 and + 1.17 V, respectively) responses in cyclic voltammetry. The electrochemically generated Cu-1 species for both the complexes are unstable and undergo disproportionation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of hexadentate ligands, H2Lm (m = 1−4), [1H-pyrrol-2-ylmethylene]{2-[2-(2-{[1H-pyrrol-2-ylmethylene]amino}phenoxy)ethoxy]phenyl}amine (H2L1), [1H-pyrrol-2-ylmethylene]{2-[4-(2-{[1H-pyrrol-2-ylmethylene]amino}phenoxy)butoxy]phenyl}amine (H2L2), [1H-pyrrol-2-ylmethylene][2-({2-[(2-{[1H-pyrrol-2-ylmethylene]amino}phenyl)thio]ethyl}thio)phenyl]amine (H2L3) and [1H-pyrrol-2-ylmethylene][2-({4-[(2-{[1H-pyrrol-2-lmethylene]amino}phenyl)thio]butyl}thio) phenyl]amine (H2L4) were prepared by condensation reaction of pyrrol-2-carboxaldehyde with {2-[2-(2-aminophenoxy)ethoxy]phenyl}amine, {2-[4-(2-aminophenoxy)butoxy]phenyl}amine, [2-({2-[(2-aminophenyl)thio]ethyl}thio)phenyl]amine and [2-({4-[(2-aminophenyl)thio]butyl}thio)phenyl]amine respectively. Reaction of these ligands with nickel(II) and copper(II) acetate gave complexes of the form MLm (m = 1−4), and the synthesized ligands and their complexes have been characterized by a variety of physico-chemical techniques. The solid and solution states investigations show that the complexes are neutral. The molecular structures of NiL3 and CuL2, which have been determined by single crystal X-ray diffraction, indicate that the NiL3 complex has a distorted octahedral coordination environment around the metal while the CuL2 complex has a seesaw coordination geometry. DFT calculations were used to analyse the electronic structure and simulation of the electronic absorption spectrum of the CuL2 complex using TDDFT gives results that are consistent with the measured spectroscopic behavior of the complex. Cyclic voltammetry indicates that all copper complexes are electrochemically inactive but the nickel complexes with softer thioethers are more easily oxidized than their oxygen analogs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The 1:1 condensation of 1,2-diaminopropane and 1-phenylbutane-1,3-dione at high dilution gives a mixture of two positional isomers of terdentate mono-condensed Schiff bases 6-amino-3-methyl-1-phenyl-4-aza-2-hepten-1-one (HAMPAH) and 6-amino-3,5-dimethyl-1-phenyl-4-aza-2-hexen-1-one (HADPAH). The mixture of the terdentate ligands has been used for further condensation with pyridine-2-carboxaldehyde or 2-acetylpyridine to obtain the unsymmetrical tetradentate Schiff base ligands. The tetradentate Schiff bases are then allowed to react with the methanol solution of copper(II) and nickel(II) perchlorate separately. The X-ray diffraction confirms the structures of two of the complexes and shows that the condensation site of the diamine with 1-phenylbutane-1,3-dione is the same.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A rise in arterial PCO(2) stimulates breathing and sympathetic activity to the heart and blood vessels. In the present study, we investigated the involvement of the retrotrapezoid nucleus (RTN) and glutamatergic mechanisms in the Botzinger/C1 region (Botz/C1) in these responses. Splanchnic sympathetic nerve discharge (sSND) and phrenic nerve discharge (PND) were recorded in urethane-anesthetized, sino-aortic-denervated, vagotomized, and artificially ventilated rats subjected to hypercapnia (end-expiratory CO(2) from 5% to 10%). Phrenic activity was absent at end-expiratory CO(2) of 4%, and strongly increased when end-expiratory CO(2) reached 10%. Hypercapnia also increased sSND by 103 +/- 7%. Bilateral injections of the GABA-A agonist muscimol (2 mM) into the RTN eliminated the PND and blunted the sSND activation (Delta = +56 +8%) elicited by hypercapnia. Injections of NMDA receptor antagonist AP-5 (100 mM), non-NMDA receptor antagonist 6,7-dinitro-quinoxaline-2,3-dione (DNQX; 100 mM) or metabotropic glutamate receptor antagonist (+/-)-alpha-methyl-4-carboxyphenylglycine (MCPG; 100 mM) bilaterally into the Botz/C1 reduced PND (Delta = +43 +/- 7%, +52 +/- 6% or +56 +/- 11%, respectively). MCPG also reduced sSND (Delta = +41 +/- 7%), whereas AP-5 and DNQX had no effect. In conclusion, the increase in sSND caused by hypercapnia depends on increased activity of the RTN and on metabotropic receptors in the Botz/C1, whereas PND depends on increased RTN activity and both ionotropic and metabotropic receptors in the Botz/C1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present study, we evaluated the role of glutamatergic mechanisms in the retrotrapezoid nucleus (RTN) in changes of splanchnic sympathetic nerve discharge (sSND) and phrenic nerve discharge (PND) elicited by central and peripheral chemoreceptor activation. Mean arterial pressure (MAP), sSND and PND were recorded in urethane-anaesthetized, vagotomized, sino-aortic denervated and artificially ventilated male Wistar rats. Hypercapnia (10% CO(2)) increased MAP by 32 +/- 4 mmHg, sSND by 104 +/- 4% and PND amplitude by 101 +/- 5%. Responses to hypercapnia were reduced after bilateral injection of the NMDA receptor antagonist D,L-2-amino-5-phosphonovalerate (AP-5; 100mm in 50 nl) in the RTN (MAP increased by 16 +/- 3 mmHg, sSNDby 82 +/- 3% and PND amplitudeby 63 +/- 7%). Bilateral injection of the non-NMDA receptor antagonist 6,7-dinitro-quinoxaline-2,3-dione(DNQX; 100 mm in 50 nl) and the metabotropic receptor antagonist (+/-)-alpha-methyl-4-carboxyphenylglycine (MCPG; 100mm in 50 nl) in the RTN did not affect sympathoexcitatory responses induced by hypercapnia. Injection of DNQX reduced hypercapnia-induced phrenic activation, whereas MCPG did not. In animals with intact carotid chemoreceptors, bilateral injections of AP-5 and DNQX in the RTN reduced increases in MAP, sSND and PND amplitude produced by intravenous injection of NaCN (50 mu g kg(-1)). Injection of MCPG in the RTN did not change responses produced by NaCN. These data indicate that RTN ionotropic glutamatergic receptors are involved in the sympathetic and respiratory responses produced by central and peripheral chemoreceptor activation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of the present study was to investigate the role of the lateral hypothalamus (LH) and its local glutamatergic neurotransmission in the cardiovascular adjustments observed when rats are submitted to acute restraint stress. Bilateral microinjection of the nonspecific synaptic inhibitor CoCl2 (0.1 nmol in 100 nL) into the LH enhanced the heart rate (HR) increase evoked by restraint stress without affecting the blood pressure increase. Local microinjection of the selective N-methyl-d-aspartate (NMDA) glutamate receptor antagonist LY235959 (2 nmol in 100 nL) into the LH caused effects that were similar to those of CoCl2. No changes were observed in the restraint-related cardiovascular response after a local microinjection of the selective non-NMDA glutamatergic receptor antagonist NBQX (2 nmol in 100 nL) into the LH. Intravenous administration of the muscarinic cholinergic receptor antagonist homatropine methyl bromide (0.2 mg/kg), a quaternary ammonium drug that does not cross the blood-brain barrier, abolished the changes in cardiovascular responses to restraint stress following LH treatment with LY235959. In summary, our findings show that the LH plays an inhibitory role on the HR increase evoked by restraint stress. Present results also indicate that local NMDA glutamate receptors, through facilitation of cardiac parasympathetic activity, mediate the LH inhibitory influence on the cardiac response to acute restraint stress. The bilateral microinjection of the CoCl2 or LY235959 into the LH enhanced the HR increase evoked by restraint stress without affecting the blood pressure increase. Intravenous administration of the homatropine methyl bromide abolished the changes in cardiovascular responses to restraint stress following LH treatment with LY235959. These results suggest that such LH influence is mediated by local NMDA glutamate receptors and involves parasympathetic nervous activation. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In an effort to better understand the antiproliferative effects of the tridentate hydrazone chelators di-2-pyridyl ketone isonicotinoyl hydrazone (HPKIH) and di-2-pyridyl ketone benzoyl hydrazone (HPKBH), we report the coordination chemistry of these ligands with the divalent metal ions, Mn, Co, Ni, Cu, and Zn. These complexes are compared with their Fe-II analogues which were reported previously. The crystal structures of Co(PKIH)(2), Ni(PKIH)(2), Cu(PKIH)(2), Mn(PKBH)(2), Ni(PKBH)(2), Cu(PKBH)(2), and Zn(PKBH)(2) are reported where similar bis-tridenate coordination modes of the ligands are defined. In pure DMF, all complexes except the Zn-II compounds exhibit metal-centered M-III/II (Mn, Fe, Co, Ni) or M-II/I (Cu) redox processes. All complexes show ligand-centered reductions at low potential. Electrochemistry in a mixed water/DMF solvent only elicited metal-centered responses from the Co and Fe complexes. Remarkably, all complexes show antiproliferative activity against the SK-N-MC neuroepithelioma cell line similar to (HPKIH) or significantly greater than that of the (HPKBH) ligand which suggests a mechanism that does not only involve the redox activity of these complexes. In fact, we suggest that the complexes act as lipophilic transport shuttles that allow entrance to the cell and enable the delivery of both the ligand and metal which act in concert to inhibit proliferation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There has been much interest in the development of iron (Fe) chelators for the treatment of cancer. We developed a series of di-2-pyridyl ketone thiosemicarbazone (HDpT) ligands which show marked and selective antitumor activity in vitro and in vivo. In this study, we assessed chemical and biological properties of these ligands and their Fe complexes in order to understand their marked activity. This included examination of their solution chemistry, electrochemistry, ability to mediate redox reactions, and antiproliferative activity against tumor cells. The higher antiproliferative efficacy of the HDpT series of chelators relative to the related di-2-pyridyl ketone isonicotinoyl hydrazone (HPKIH) analogues can be ascribed, in part, to the redox potentials of their Fe complexes which lead to the generation of reactive oxygen species. The most effective HDpT ligands as antiproliferative agents possess considerable lipophilicity and were shown to be charge neutral at physiological pH, allowing access to intracellular Fe pools.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the synthesis of a novel class of low band gap copolymers based on anacenaphtho[1,2-b]quinoxaline core and oligothiophene derivatives acting as the acceptor and the donor moieties, respectively. The optical properties of the copolymers were characterized by ultraviolet-visible spectroscopy while the electrochemical properties were determined by cyclic voltammetry. The band gap of these polymers was found to be in the range 1.8-2.0 eV as calculated from the optical absorption band edge. X-ray diffraction measurements show weak pi-pi stacking interactions between the polymer chains. The hole mobility of the copolymers was evaluated using field-effect transistor measurements yielding values in the range 10(-5)-10(-3) cm(2)/Vs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mechanisms of neuronal degeneration following traumatic head injury are not well understood and no adequate treatment is currently available for the prevention of traumatic brain damage in humans. Traumatic head injury leads to primary (at impact) and secondary (distant) damage to the brain. Mechanical percussion of the rat cortex mimics primary damage seen after traumatic head injury in humans; no animal model mimicking the secondary damage following traumatic head injury has yet been established. Rats subjected to percussion trauma of the cortex showed primary damage in the cortex and secondary damage in the hippocampus. Morphometric analysis demonstrated that both cortical and hippocampal damage was mitigated by pretreatment with either the N-methyl-D-aspartate (NMDA) antagonist 3-((+/-)- 2-carboxypiperazin-4-yl)-propyl-1-phosphonate (CPP) or the non-NMDA antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline (NBQX). Neither treatment prevented primary damage in the cortex when therapy was started after trauma. Surprisingly, delayed treatment of rats with NBQX, but not with CPP, beginning between 1 and 7 hr after trauma prevented hippocampal damage. No protection was seen when therapy with NBQX was started 10 hr after trauma. These data indicate that both NMDA- and non-NMDA-dependent mechanisms contribute to the development of primary damage in the cortex, whereas non-NMDA mechanisms are involved in the evolution of secondary damage in the hippocampus in rats subjected to traumatic head injury. The wide therapeutic time-window documented for NBQX suggests that antagonism at non-NMDA receptors may offer a novel therapeutic approach for preventing deterioration of the brain after head injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystal structure of TANDEM (des-N-tetramethyltriostin A), a synthetic analogue of the quinoxaline antibiotic triostin A, has been determined independently at -135 and 7 'C and refined to R values of 0.088 and 0.147, respectively. The molecule has approximate 2-fold symmetry, with the quinoxaline chromophores and the disulfide cross-bridge projecting from opposite sides of the peptide ring. The quinoxaline groups are nearly parallel to each other and separated by about 6.5 A. The peptide backbone resembles a distorted antiparallel 13 ribbon joined by intramolecular hydrogen bonds N-H(LVal)--O(L-Ala). At low temperatures, the TANDEM molecule is surrounded by a regular first- and second-order hydration sphere containing 14 independent water molecules. At room temperature, only the first-order hydration shell is maintained. Calculations of the interplanar separation of the quinoxaline groups as a function of their orientation with respect to the peptide ring support the viability of TANDEM to intercalate bifunctionally into DNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cobalt(III) complexes [Co(pnt)(B)(2)](NO3)(2) (1-3) of pyridine-2-thiol (pnt) and phenanthroline bases (B), viz. 1,10-phenanthroline (phen in 1), dipyrido[3,2-d: 2',3'-f]quinoxaline (dpq in 2) and dipyrido[3,2-a:2',3'-c] phenazine (dppz in 3), have been prepared, characterized and their photo-induced anaerobic DNA cleavage activity studied. The crystal structure of 1a as mixed ClO4- and PF6- salt of 1 shows a (CoN5S)-N-III coordination geometry in which the pnt and phen showed N,S- and N,N-donor binding modes, respectively. The complexes exhibit Co(III)/Co(II) redox couple near -0.3 V (vs. SCE) in 20% DMF-Tris-HCl buffer having 0.1 M TBAP. The complexes show binding propensity to calf thymus DNA giving K-b values within 2.2 x 10(4)-7.3 x 10(5) M-1. Thermal melting and viscosity data suggest DNA surface and/or groove binding of the complexes. The complexes show significant anaerobic DNA cleavage activity in red light under argon atmosphere possibly involving sulfide anion radical or thiyl radical species. The DNA cleavage reaction under aerobic medium in red light is found to involve both singlet oxygen and hydroxyl radical pathways. The dppz complex 3 shows non-specific BSA and lysozyme protein cleavage activity in UV-A light of 365 nm via both hydroxyl and singlet oxygen pathways. The dppz complex 3 exhibits photocytotoxicity in HeLa cervical cancer cells giving IC50 values of 767 nM and 19.38 mu M in UV-A light of 365 nm and in the dark, respectively. A significant reduction of the dark toxicity of the dppz base (IC50 = 8.34 mu M in dark) is observed on binding to the cobalt(III) center.