991 resultados para Quaternary structure
Resumo:
Structural studies in this laboratory encompass four of the five major classes of plant lectins, including the one discovered by us. In addition to addressing issues specific to individual lectins, the work provided insights into protein folding, quaternary association and generation of ligand specificity. Legume and beta-prism fold lectins constitute families of proteins in which small alterations in essentially the same tertiary structure lead to large variations in quaternary structure, including that involving an open structure. Strategies for generating ligand specificity include water bridges, variation in loop length, post translational modification and oligomerization. Three of the structural classes investigated have subunits with three-fold symmetry. The symmetry in the structure is reflected in the sequence to different extents in different subclasses. The evolutionary implications of this observation have been explored. The work on lectins has now been extended to those from mycobacteria.
Resumo:
Small heat shock proteins (sHSPs) are a family of ATP-independent molecular chaperones which prevent cellular protein aggregation by binding to misfolded proteins. sHSPs form large oligomers that undergo drastic rearrangement/dissociation in order to execute their chaperone activity in protecting substrates from stress. Substrate-binding sites on sHSPs have been predominantly mapped on their intrinsically disordered N-terminal arms. This region is highly variable in sequence and length across species, and has been implicated in both oligomer formation and in mediating chaperone activity. Here, we present our results on the functional and structural characterization of five sHSPs in rice, each differing in their subcellular localisation, viz., cytoplasm, nucleus, chloroplast, mitochondria and peroxisome. We performed activity assays and dynamic light scattering studies to highlight differences in the chaperone activity and quaternary assembly of sHSPs targeted to various organelles. By cloning constructs that differ in the length and sequence of the tag in the N-terminal region, we have probed the sensitivity of sHSP oligomer assembly and chaperone activity to the length and amino acid composition of the N-terminus. In particular, we have shown that the incorporation of an N-terminal tag has significant consequences on sHSP quaternary structure.
Resumo:
The objective the study was to determine the levels of glucose and triglycerides in seminal plasma of 10 guinea pigs, which were fed for a period of 2 months with a diet containing 10% more ED. The level of glucose found in seminal plasma was 11.59 ± 0.5 mg/dL and triglyceride value was 55.95 ± 3.2 mg/dL, while the motility was 97% on average. We conclude that in guinea pigs the levels both glucose and triglycerides were increased by major level of ED in feed, but the spermatic motility was not.
Resumo:
During alcoholic fermentation, the products build up and can, ultimately, kill the organism due to their effects on the cell's macromolecular systems. The effects of alcohols on the steady-state kinetic parameters of the model enzyme ß-galactosidase were studied. At modest concentrations (0 to 2 M), there was little effect of methanol, ethanol, propanol and butanol on the kinetic constants. However, above these concentrations, each alcohol caused the maximal rate, V (max), to fall and the Michaelis constant, K (m), to rise. Except in the case of methanol, the chaotropicity of the solute, rather than its precise chemical structure, determined and can, therefore, be used to predict inhibitory activity. Compounds which act as compatible solutes (e.g. glycerol and other polyols) generally reduced enzyme activity in the absence of alcohols at the concentration tested (191 mM). In the case of the ethanol- or propanol-inhibited ß-galactosidase, the addition of compatible solutes was unable to restore the enzyme's kinetic parameters to their uninhibited levels; addition of chaotropic solutes such as urea tended to enhance the effects of these alcohols. It is possible that the compatible solutes caused excessive rigidification of the enzyme's structure, whereas the alcohols disrupt the tertiary and quaternary structure of the protein. From the point of view of protecting enzyme activity, it may be unwise to add compatible solutes in the early stages of industrial fermentations; however, there may be benefits as the alcohol concentration increases.
Resumo:
Macrophage migration inhibitory factor (MIF) is a homotrimeric multifunctional proinflammatory cytokine that has been implicated in the pathogenesis of several inflammatory and autoimmune diseases. Current therapeutic strategies for targeting MIF focus on developing inhibitors of its tautomerase activity or modulating its biological activities using anti-MIF neutralizing antibodies. Herein we report a new class of isothiocyanate (ITC)-based irreversible inhibitors of MIF. Modification by benzyl isothiocyanate (BITC) and related analogues occurred at the N-terminal catalytic proline residue without any effect on the oligomerization state of MIF. Different alkyl and arylalkyl ITCs modified MIF with nearly the same efficiency as BITC. To elucidate the mechanism of action, we performed detailed biochemical, biophysical, and structural studies to determine the effect of BITC and its analogues on the conformational state, quaternary structure, catalytic activity, receptor binding, and biological activity of MIF. Light scattering, analytical ultracentrifugation, and NMR studies on unmodified and ITC-modified MIF demonstrated that modification of Pro1 alters the tertiary, but not the secondary or quaternary, structure of the trimer without affecting its thermodynamic stability. BITC induced drastic effects on the tertiary structure of MIF, in particular residues that cluster around Pro1 and constitute the tautomerase active site. These changes in tertiary structure and the loss of catalytic activity translated into a reduction in MIF receptor binding activity, MIF-mediated glucocorticoid overriding, and MIF-induced Akt phosphorylation. Together, these findings highlight the role of tertiary structure in modulating the biochemical and biological activities of MIF and present new opportunities for modulating MIF biological activities in vivo.
Resumo:
Les récepteurs nucléaires (RN) sont des facteurs de transcription ligand dépendants qui contrôlent une grande variété de processus biologiques de la physiologie humaine, ce qui a fait d'eux des cibles pharmacologiques privilégiées pour de nombreuses maladies. L'un de ces récepteurs, le récepteur de l’œstrogène alpha (ERα), peut activer la prolifération cellulaire dans certaines sections de l'épithélium mammaire tandis qu’un autre, le récepteur de l'acide rétinoïque alpha (RARα), peut provoquer un arrêt de la croissance et la différenciation cellulaire. La signalisation de ces deux récepteurs peut être altérée dans le cancer du sein, contribuant à la tumorigénèse mammaire. L’activité d’ERα peut être bloquée par les anti-oestrogènes (AE) pour inhiber la prolifération des cellules tumorales mammaires. Par contre, l’activation des voies de RARα avec des rétinoïdes dans un contexte clinique a rencontré peu de succès. Ceci pourrait résulter du manque de spécificité des ligands testés pour RARα et/ou de leur activité seulement dans certains sous-types de tumeurs mammaires. Puisque les récepteurs nucléaires forment des homo- et hétéro-dimères, nous avons cherché à développer de nouveaux essais pharmacologiques pour étudier l'activité de complexes dimériques spécifiques, leur dynamique d’association et la structure quaternaire des récepteurs des œstrogènes. Nous décrivons ici une nouvelle technique FRET, surnommée BRET avec renforcement de fluorescence par transferts combinés (BRETFect), qui permet de détecter la formation de complexes de récepteurs nucléaires ternaires. Le BRETFect peut suivre l'activation des hétérodimères ERα-ERβ et met en évidence un mécanisme allostérique d'activation que chaque récepteur exerce sur son partenaire de dimérisation. L'utilisation de BRETFect en combinaison avec le PCA nous a permis d'observer la formation de multimères d’ERα fonctionnels dans des cellules vivantes pour la première fois. La formation de multimères est favorisée par les AE induisant la dégradation du récepteur des oestrogènes, ce qui pourrait contribuer à leurs propriétés spécifiques. Ces essais de BRET apportent une nette amélioration par rapport aux tests de vecteurs rapporteur luciférase classique, en fournissant des informations spécifiques aux récepteurs en temps réel sans aucune interférence par d'autres processus tels que la transcription et de la traduction. L'utilisation de ces tests nous a permis de caractériser les propriétés de modulation de l’activité des récepteurs nucléaires d’une nouvelle classe de molécules hybrides qui peuvent à la fois lier ERa ou RAR et inhiber les HDACs, conduisant au développement de nouvelles molécules prometteuses bifonctionnelles telles que la molécule hybride RAR-agoniste/HDACi TTNN-HA.
Resumo:
Drug resistance and virulence of Mycobacterium tuberculosis are partially related to the pathogen`s antioxidant systems. Peroxide detoxification in this bacterium is achieved by the heme-containing catalase peroxidase and different two-cysteine peroxiredoxins. M. tuberculosis genome also codifies for a putative one-cysteine peroxiredoxin, alkyl hydroperoxide reductase E (MtAhpE). Its expression was previously demonstrated at a transcriptional level, and the crystallographic structure of the recombinant protein was resolved under reduced and oxidized states. Herein, we report that the conformation of MtAhpE changed depending on its single cysteine redox state, as reflected by different tryptophan fluorescence properties and changes in quaternary structure. Dynamics of fluorescence changes, complemented by competition kinetic assays, were used to perform protein functional studies. MtAhE reduced peroxynitrite 2 orders of magnitude faster than hydrogen peroxide (1.9 x 10(7) M(-1) s(-1) vs 8.2 x 10(4) M(-1) s(-1) at pH 7.4 and 25 degrees C, respectively). The latter also caused cysteine overoxidation to sulfinic acid, but at much slower rate constant (40 M(-1) s(-1)). The pK(a) of the thiol in the reduced enzyme was 5.2, more than one unit lower than that of the sulfenic acid in the oxidized enzyme. The pH profile of hydrogen peroxide-mediated thiol and sulfenic acid oxidations indicated thiolate and sulfenate as the reacting species. The formation of sulfenic acid as well as the catalytic peroxidase activity of MtAhpE was demonstrated using the artificial reducing substrate thionitrobenzoate. Taken together, our results indicate that MtAhpE is a relevant component in the antioxidant repertoire of M. tuberculosis probably involved in peroxide and specially peroxynitrite detoxification.
Resumo:
Trypanosomes are flagellated protozoa responsible for serious parasitic diseases that have been classified by the World Health Organization as tropical sicknesses of major importance. One important drug target receiving considerable attention is the enzyme glyceraldehyde-3-phosphate dehydrogenase from the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease (T. cruzi Glyceraldehyde-3-phosphate dehydrogenase (TcGAPDH); EC 1.2.1.12). TcGAPDH is a key enzyme in the glycolytic pathway of T. cruzi and catalyzes the oxidative phosphorylation of D-glyceraldehyde-3-phosphate (G3P) to 1,3-bisphosphoglycerate (1,3-BPG) coupled to the reduction of oxidized nicotinamide adenine dinucleotide, (NAD(+)) to NADH, the reduced form. Herein, we describe the cloning of the T. cruzi gene for TcGAPDH into the pET-28a(+) vector, its expression as a tagged protein in Escherichia coli, purification and kinetic characterization. The His(6)-tagged TcGAPDH was purified by affinity chromatography. Enzyme activity assays for the recombinant His(6)-TcGAPDH were carried out spectrophotometrically to determine the kinetic parameters. The apparent Michaelis-Menten constant (K(M)(app)) determined for D-glyceraldehyde-3-phosphate and NAD(+) were 352 +/- 21 and 272 +/- 25 mu M, respectively, which were consistent with the values for the untagged enzyme reported in the literature. We have demonstrated by the use of Isothermal Titration Calorimetry (ITC) that this vector modification resulted in activity preserved for a higher period. We also report here the use of response surface methodology (RSM) to determine the region of optimal conditions for enzyme activity. A quadratic model was developed by RSM to describe the enzyme activity in terms of pH and temperature as independent variables. According to the RMS contour plots and variance analysis, the maximum enzyme activity was at 29.1 degrees C and pH 8.6. Above 37 degrees C, the enzyme activity starts to fall, which may be related to previous reports that the quaternary structure begins a process of disassembly. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The Hsp70 family is one of the most important and conserved molecular chaperone families. It is well documented that Hsp70 family members assist many cellular processes involving protein quality control, as follows: protein folding, transport through membranes, protein degradation, escape from aggregation, intracellular signaling, among several others. The Hsp70 proteins act as a cellular pivot capable of receiving and distributing substrates among the other molecular chaperone families. Despite the high identity of the Hsp70 proteins, there are several homologue Hsp70 members that do not have the same role in the cell, which allow them to develop and participate in such large number of activities. The Hsp70 proteins are composed of two main domains: one that binds ATP and hydrolyses it to ADP and another which directly interacts with substrates. These domains present bidirectional heterotrophic allosteric regulation allowing a fine regulated cycle of substrate binding and release. The general mechanism of the Hsp70s cycle is under the control of ATP hydrolysis that modulates the low (ATP-bound state) and high (ADP-bound state) affinity states of Hsp70 for substrates. An important feature of the Hsp70s cycle is that they have several co-chaperones that modulate their cycle and that can also interact and select substrates. Here, we review some known details of the bidirectional heterotrophic allosteric mechanism and other important features for Hsp70s regulating cycle and function.
Resumo:
An acidic phospholipase A(2) (PLA(2)) isolated from Bothrops jararacussu snake venom was crystallized with two inhibitors: alpha-tocopherol (vitamin E) and p-bromophenacyl bromide (BPB). The crystals diffracted at 1.45- and 1.85-Angstrom resolution, respectively, for the complexes with alpha-tocopherol and p-bromophenacyl bromide. The crystals are not isomorphous with those of the native protein, suggesting the inhibitors binding was successful and changes in the quaternary structure may have occurred. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
For the first time, a complete X-ray diffraction data set has been collected from a myotoxic Asp49-phospholipase A(2) (Asp49-PLA(2)) with low catalytic activity (BthTX-II from Bothrops jararacussu venom) and a molecular-replacement solution has been obtained with a dimer in the asymmetric unit. The quaternary structure of BthTX-II resembles the myotoxin Asp49-PLA(2) PrTX-III (piratoxin III from B. pirajai venom) and all non-catalytic and myotoxic dimeric Lys49-PLA(2)s. In contrast, the oligomeric structure of BthTX-II is different from the highly catalytic and non-myotoxic BthA-I (acidic PLA(2) from B. jararacussu). Thus, comparison between these structures should add insight into the catalytic and myotoxic activities of bothropic PLA(2)s.
Resumo:
Phospholipases A(2) homologues are found in the venom of Crotalinae snakes, being their main action related to myonecrosis induction. Although many studies on these toxins had already been performed, their mechanism of action remains unclear. Here, important aspects about these toxins are reviewed, including their correct biological assembly and how essential is the natural substitution D49K for their catalytic inactivity.
Resumo:
Docking simulations have been used to assess protein complexes with some success. Small angle X-ray scattering (SAXS) is a well-established technique to investigate protein spatial configuration. This work describes the integration of geometric docking with SAXS to investigate the quaternary structure of recombinant human purine nucleoside phosphorylase (PNP). This enzyme catalyzes the reversible phosphorolysis of N-ribosidic bonds of purine nucleosides and deoxynucleosides. A genetic deficiency due to mutations in the gene encoding for PNP causes gradual decrease in T-cell immunity. Inappropriate activation of T-cells has been implicated in several clinically relevant human conditions such as transplant rejection, rheumatoid arthritis, lupus, and T-cell lymphomas. PNP is therefore a target for inhibitor development aiming at T-cell immune response modulation and has been submitted to extensive structure-based drug design. The present analysis confirms the trimeric structure observed in the crystal. The potential application of the present procedure to other systems is discussed. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Vertebrate hemoglobin, contained in erythrocytes, is a globular protein with a quaternary structure composed of 4 globin chains (2 alpha and 2 beta) and a prosthetic group named heme bound to each one. Having myoglobin as an ancestor, hemoglobin acquired the capacity to respond to chemical stimuli that modulate its function according to tissue requirements for oxygen. Fish are generally submitted to spatial and temporal O2 variations and have developed anatomical, physiological and biochemical strategies to adapt to the changing environmental gas availability. Structurally, most fish hemoglobins are tetrameric; however, those from some species such as lamprey and hagfish dissociate, being monomeric when oxygenated and oligomeric when deoxygenated. Fish blood frequently possesses several hemoglobins; the primary origin of this finding lies in the polymorphism that occurs in the globin loci, an aspect that may occasionally confer advantages to its carriers or even be a harmless evolutionary remnant. on the other hand, the functional properties exhibit different behaviors, ranging from a total absence of responses to allosteric regulation to drastic ones, such as the Root effect.
Resumo:
The orphan receptor nerve growth factor-induced B (NGFI-B) is a member of the nuclear receptor's subfamily 4A (Nr4a). NGFI-B was shown to be capable of binding both as a monomer to an extended half-site containing a single AAAGGTCA motif and also as a homodimer to a widely separated everted repeat, as opposed to a large number of nuclear receptors that recognize and bind specific DNA sequences predominantly as homo- and/or heterodimers. To unveil the structural organization of NGFI-B in solution, we determined the quaternary structure of the NGFI-B LBD by a combination of ab initio procedures from small-angle X-ray scattering (SAXS) data and hydrogen-deuterium exchange followed by mass spectrometry. Here we report that the protein forms dimers in solution with a radius of gyration of 2.9 nm and maximum dimension of 9.0 nm. We also show that the NGFI-B LBD dimer is V-shaped, with the opening angle significantly larger than that of classical dimer's exemplified by estrogen receptor (ER) or retinoid X receptor (RXR). Surprisingly, NGFI-B dimers formation does not occur via the classical nuclear receptor dimerization interface exemplified by ER and RXR, but instead, involves an extended surface area composed of the loop between helices 3 and 4 and C-terminal fraction of the helix 3. Remarkably, the NGFI-B dimer interface is similar to the dimerization interface earlier revealed for glucocorticoid nuclear receptor (GR), which might be relevant to the recognition of cognate DNA response elements by NGFI-B and to antagonism of NGFI-B-dependent transcription exercised by GR in cells. Published by Cold Spring Harbor Laboratory Press. Copyright © 2007 The Protein Society.