998 resultados para Quantum spin Hall
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We solve the spectrum of the closed Temperley-Lieb quantum spin chains using the coordinate Bethe ansatz. These models are invariant under the quantum group U-q[sl(2)].
Resumo:
We solve the spectrum of quantum spin chains based on representations of the Temperley-Lieb algebra associated with the quantum groups U-q(X-n) for X-n = A(1), B-n, C-n and D-n. The tool is a modified version of the coordinate Bethe ansatz through a suitable choice of the Bethe states which give to all models the same status relative to their diagonalization. All these models have equivalent spectra up to degeneracies and the spectra of the lower-dimensional representations are contained in the higher-dimensional ones. Periodic boundary conditions, free boundary conditions and closed nonlocal boundary conditions are considered. Periodic boundary conditions, unlike free boundary conditions, bleak quantum group invariance. For closed nonlocal cases the models are quantum group invariant as well as periodic in a certain sense.
Resumo:
We derive an infinite set of conserved charges for some Z(N) symmetric quantum spin models by constructing their Lax pairs. These models correspond to the Potts model, Ashkin-Teller model and the particular set of self-dual Z(N) models solved by Fateev and Zamolodchikov [6]. The exact ground state energy for this last family of hamiltonians is also presented. © 1986.
Resumo:
We study the thermodynamic properties of a certain type of space-inhomogeneous Fermi and quantum spin systems on lattices. We are particularly interested in the case where the space scale of the inhomogeneities stays macroscopic, but very small as compared to the side-length of the box containing fermions or spins. The present study is however not restricted to "macroscopic inhomogeneities" and also includes the (periodic) microscopic and mesoscopic cases. We prove that - as in the homogeneous case - the pressure is, up to a minus sign, the conservative value of a two-person zero-sum game, named here thermodynamic game. Because of the absence of space symmetries in such inhomogeneous systems, it is not clear from the beginning what kind of object equilibrium states should be in the thermodynamic limit. However, we give rigorous statements on correlations functions for large boxes. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4763465]
Resumo:
In questa tesi abbiamo studiato il comportamento delle entropie di Entanglement e dello spettro di Entanglement nel modello XYZ attraverso delle simulazioni numeriche. Le formule per le entropie di Von Neumann e di Renyi nel caso di una catena bipartita infinita esistevano già, ma mancavano ancora dei test numerici dettagliati. Inoltre, rispetto alla formula per l'Entropia di Entanglement di J. Cardy e P. Calabrese per sistemi non critici, tali relazioni presentano delle correzioni che non hanno ancora una spiegazione analitica: i risultati delle simulazioni numeriche ne hanno confermato la presenza. Abbiamo inoltre testato l'ipotesi che lo Schmidt Gap sia proporzionale a uno dei parametri d'ordine della teoria, e infine abbiamo simulato numericamente l'andamento delle Entropie e dello spettro di Entanglement in funzione della lunghezza della catena di spin. Ciò è stato possibile solo introducendo dei campi magnetici ''ad hoc'' nella catena, con la proprietà che l'andamento delle suddette quantità varia a seconda di come vengono disposti tali campi. Abbiamo quindi discusso i vari risultati ottenuti.
Resumo:
We consider a large quantum system with spins 12 whose dynamics is driven entirely by measurements of the total spin of spin pairs. This gives rise to a dissipative coupling to the environment. When one averages over the measurement results, the corresponding real-time path integral does not suffer from a sign problem. Using an efficient cluster algorithm, we study the real-time evolution from an initial antiferromagnetic state of the two-dimensional Heisenberg model, which is driven to a disordered phase, not by a Hamiltonian, but by sporadic measurements or by continuous Lindblad evolution.
Resumo:
We study the real-time evolution of large open quantum spin systems in two spatial dimensions, whose dynamics is entirely driven by a dissipative coupling to the environment. We consider different dissipative processes and investigate the real-time evolution from an ordered phase of the Heisenberg or XY model towards a disordered phase at late times, disregarding unitary Hamiltonian dynamics. The corresponding Kossakowski-Lindblad equation is solved via an efficient cluster algorithm. We find that the symmetry of the dissipative process determines the time scales, which govern the approach towards a new equilibrium phase at late times. Most notably, we find a slow equilibration if the dissipative process conserves any of the magnetization Fourier modes. In these cases, the dynamics can be interpreted as a diffusion process of the conserved quantity.
Resumo:
Using quantum Monte Carlo, we study the nonequilibrium transport of magnetization in large open strongly correlated quantum spin-12 systems driven by purely dissipative processes that conserve the uniform or staggered magnetization, disregarding unitary Hamiltonian dynamics. We prepare both a low-temperature Heisenberg ferromagnet and an antiferromagnet in two parts of the system that are initially isolated from each other. We then bring the two subsystems in contact and study their real-time dissipative dynamics for different geometries. The flow of the uniform or staggered magnetization from one part of the system to the other is described by a diffusion equation that can be derived analytically.