980 resultados para Quantum mechanical method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic properties of liquid hydrogen fluoride (HF) were investigated by carrying out sequential quantum mechanics/Born-Oppenheimer molecular dynamics. The structure of the liquid is in good agreement with recent experimental information. Emphasis was placed on the analysis of polarisation effects, dynamic polarisability and electronic excitations in liquid HF. Our results indicate an increase in liquid phase of the dipole moment (similar to 0.5 D) and isotropic polarisability (5%) relative to their gas-phase values. Our best estimate for the first vertical excitation energy in liquid HF indicates a blue-shift of 0.4 +/- 0.2 eV relative to that of the gas-phase monomer (10.4 eV). (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A very high level of theoretical treatment (complete active space self-consistent field CASSCF/MRCI/aug-cc-pV5Z) was used to characterize the spectroscopic properties of a manifold of quartet and doublet states of the species BeP, as yet experimentally unknown. Potential energy curves for 11 electronic states were obtained, as well as the associated vibrational energy levels, and a whole set of spectroscopic constants. Dipole moment functions and vibrationally averaged dipole moments were also evaluated. Similarities and differences between BeN and BeP were analysed along with the isovalent SiB species. The molecule BeP has a X (4)Sigma(-) ground state, with an equilibrium bond distance of 2.073 angstrom, and a harmonic frequency of 516.2 cm(-1); it is followed closely by the states (2)Pi (R(e) = 2.081 angstrom, omega(e) = 639.6 cm(-1)) and (2)Sigma(-) (R(e) = 2.074 angstrom, omega(e) = 536.5 cm(-1)), at 502 and 1976 cm(-1), respectively. The other quartets investigated, A (4)Pi (R(e) = 1.991 angstrom, omega(e) = 555.3 cm(-1)) and B (4)Sigma(-) (R(e) = 2.758 angstrom, omega(e) = 292.2 cm(-1)) lie at 13 291 and 24 394 cm(-1), respectively. The remaining doublets ((2)Delta, (2)Sigma(+)(2) and (2)Pi(3)) all fall below 28 000 cm(-1). Avoided crossings between the (2)Sigma(+) states and between the (2)Pi states add an extra complexity to this manifold of states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O desenvolvimento de linhagens resistentes de Plasmodium falciparum tem encorajado a busca por novas drogas antimalariais. A febrifugina é uma substância natural com alta atividade contra o P. falciparum que apresenta propriedade emética e toxicidade para o fígado tal que não permitem o seu uso clínico. A busca por análogos que possam ter uma performance clínica melhor é um tema de pesquisa atual. Nosso objetivo é investigar a estrutura eletrônica teórica de uma família de derivados da febrifugina empregando cálculos semi-empíricos de orbitais moleculares, procurando por índices eletrônicos que possam ajudar a modelar novos derivados mais eficientes. Os resultados teóricos mostram que para as moléculas mais seletivas existe um agrupamento dos valores de determinados índices em intervalos bem definidos. O modelo proposto para se obter alta seletividade foi testado com sucesso.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The soft stadium is defined by a monomial potential with exponent α as a parameter, such that α → ∞ corresponds to the billiard. The practical use of the quantum section method depends only on the partial separability of the system on both sides of the section, which holds for all α's. In particular, for α = 1.0, the system becomes globally separable, allowing for a general test of the method. For various values of the parameter, we also tested the use of the asymptotic WKB-type approximation in the construction of Green's functions and asymptotic overlap integrals to obtain higher energy eigenvalues. We show these approximations to be reliable. © 2000 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

First-principles calculations set the comprehension over performance of novel cathodoluminescence (CL) properties of BaZrO3 prepared through microwave-assisted hydrothermal. Ground (singlet, s*) and excited (singlet s** and triplet t**) electronic states were built from zirconium displacement of 0.2 Å in {001} direction. Each ground and excited states were characterized by the correlation of their corresponding geometry with electronic structures and Raman vibrational frequencies which were also identified experimentally. A kind of optical polarization switching was identified by the redistribution of 4dz2 and 4dxz (Zr) orbitals and 2pz O orbital. As a consequence, asymmetric bending and stretching modes theoretically obtained reveal a direct dependence with their polyhedral intracluster and/or extracluster ZrO6 distortions with electronic structure. Then, CL of the as-synthesized BaZrO3 can be interpreted as a result of stable triplet excited states, which are able to trap electrons, delaying the emission process due to spin multiplicity changes. © 2013 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of the pm3 semiempirical quantum mechanical method to reproduce hydrogen bonding in nucleotide base pairs was assessed. Results of pm3 calculations on the nucleotides 2′-deoxyadenosine 5′-monophosphate (pdA), 2′-deoxyguanosine 5′-monophosphate (pdG), 2′-deoxycytidine 5′-monophosphate (pdC), and 2′-deoxythymidine 5′-monophosphate (pdT) and the base pairs pdA–pdT, pdG–pdC, and pdG(syn)–pdC are presented and discussed. The pm3 method is the first of the parameterized nddo quantum mechanical models with any ability to reproduce hydrogen bonding between nucleotide base pairs. Intermolecular hydrogen bond lengths between nucleotides displaying Watson–Crick base pairing are 0.1–0.2 Å less than experimental results. Nucleotide bond distances, bond angles, and torsion angles about the glycosyl bond (χ), the C4′C5′ bond (γ), and the C5′O5′ bond (β) agree with experimental results. There are many possible conformations of nucleotides. pm3 calculations reveal that many of the most stable conformations are stabilized by intramolecular CHO hydrogen bonds. These interactions disrupt the usual sugar puckering. The stacking interactions of a dT–pdA duplex are examined at different levels of gradient optimization. The intramolecular hydrogen bonds found in the nucleotide base pairs disappear in the duplex, as a result of the additional constraints on the phosphate group when part of a DNA backbone. Sugar puckering is reproduced by the pm3 method for the four bases in the dT–pdA duplex. pm3 underestimates the attractive stacking interactions of base pairs in a B-DNA helical conformation. The performance of the pm3 method implemented in SPARTAN is contrasted with that implemented in MOPAC. At present, accurate ab initio calculations are too timeconsuming to be of practical use, and molecular mechanics methods cannot be used to determine quantum mechanical properties such as reaction-path calculations, transition-state structures, and activation energies. The pm3 method should be used with extreme caution for examination of small DNA systems. Future parameterizations of semiempirical methods should incorporate base stacking interactions into the parameterization data set to enhance the ability of these methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of the binary nucleation of sulfuric acid in aerosol formation and its implications for global warming is one of the fundamental unsettled questions in atmospheric chemistry. We have investigated the thermodynamics of sulfuric acid hydration using ab initio quantum mechanical methods. For H2SO4(H2O)n where n = 1–6, we used a scheme combining molecular dynamics configurational sampling with high-level ab initio calculations to locate the global and many low lying local minima for each cluster size. For each isomer, we extrapolated the Møller–Plesset perturbation theory (MP2) energies to their complete basis set (CBS) limit and added finite temperature corrections within the rigid-rotor-harmonic-oscillator (RRHO) model using scaled harmonic vibrational frequencies. We found that ionic pair (HSO4–·H3O+)(H2O)n−1 clusters are competitive with the neutral (H2SO4)(H2O)n clusters for n ≥ 3 and are more stable than neutral clusters for n ≥ 4 depending on the temperature. The Boltzmann averaged Gibbs free energies for the formation of H2SO4(H2O)n clusters are favorable in colder regions of the troposphere (T = 216.65–273.15 K) for n = 1–6, but the formation of clusters with n ≥ 5 is not favorable at higher (T > 273.15 K) temperatures. Our results suggest the critical cluster of a binary H2SO4–H2O system must contain more than one H2SO4 and are in concert with recent findings(1) that the role of binary nucleation is small at ambient conditions, but significant at colder regions of the troposphere. Overall, the results support the idea that binary nucleation of sulfuric acid and water cannot account for nucleation of sulfuric acid in the lower troposphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of the binary nucleation of sulfuric acid in aerosol formation and its implications for global warming is one of the fundamental unsettled questions in atmospheric chemistry. We have investigated the thermodynamics of sulfuric acid hydration using ab initio quantum mechanical methods. For H2SO4(H2O)n where n = 1–6, we used a scheme combining molecular dynamics configurational sampling with high-level ab initio calculations to locate the global and many low lying local minima for each cluster size. For each isomer, we extrapolated the Møller–Plesset perturbation theory (MP2) energies to their complete basis set (CBS) limit and added finite temperature corrections within the rigid-rotor-harmonic-oscillator (RRHO) model using scaled harmonic vibrational frequencies. We found that ionic pair (HSO4–·H3O+)(H2O)n−1clusters are competitive with the neutral (H2SO4)(H2O)n clusters for n ≥ 3 and are more stable than neutral clusters for n ≥ 4 depending on the temperature. The Boltzmann averaged Gibbs free energies for the formation of H2SO4(H2O)n clusters are favorable in colder regions of the troposphere (T = 216.65–273.15 K) for n = 1–6, but the formation of clusters with n ≥ 5 is not favorable at higher (T > 273.15 K) temperatures. Our results suggest the critical cluster of a binary H2SO4–H2O system must contain more than one H2SO4 and are in concert with recent findings(1) that the role of binary nucleation is small at ambient conditions, but significant at colder regions of the troposphere. Overall, the results support the idea that binary nucleation of sulfuric acid and water cannot account for nucleation of sulfuric acid in the lower troposphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the descendants of self-adjointly extended Hamiltonians in supersymmetric quantum mechanics on a half-line, on an interval, and on a punctured line or interval. While there is a 4-parameter family of self-adjointly extended Hamiltonians on a punctured line, only a 3-parameter sub-family has supersymmetric descendants that are themselves self-adjoint. We also address the self-adjointness of an operator related to the supercharge, and point out that only a sub-class of its most general self-adjoint extensions is physical. Besides a general characterization of self-adjoint extensions and their supersymmetric descendants, we explicitly consider concrete examples, including a particle in a box with general boundary conditions, with and without an additional point interaction. We also discuss bulk-boundary resonances and their manifestation in the supersymmetric descendant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We announce a proof of H-stability for the quantized radiation field, with ultraviolet cutoff, coupled to arbitrarily many non-relativistic quantized electrons and static nuclei. Our result holds for arbitrary atomic numbers and fine structure constant. We also announce bounds for the energy of many electrons and nuclei in a classical vector potential and for the eigenvalue sum of a one-electron Pauli Hamiltonian with magnetic field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The wealth of kinetic and structural information makes inorganic pyrophosphatases (PPases) a good model system to study the details of enzymatic phosphoryl transfer. The enzyme accelerates metal-complexed phosphoryl transfer 1010-fold: but how? Our structures of the yeast PPase product complex at 1.15 Å and fluoride-inhibited complex at 1.9 Å visualize the active site in three different states: substrate-bound, immediate product bound, and relaxed product bound. These span the steps around chemical catalysis and provide strong evidence that a water molecule (Onu) directly attacks PPi with a pKa vastly lowered by coordination to two metal ions and D117. They also suggest that a low-barrier hydrogen bond (LBHB) forms between D117 and Onu, in part because of steric crowding by W100 and N116. Direct visualization of the double bonds on the phosphates appears possible. The flexible side chains at the top of the active site absorb the motion involved in the reaction, which may help accelerate catalysis. Relaxation of the product allows a new nucleophile to be generated and creates symmetry in the elementary catalytic steps on the enzyme. We are thus moving closer to understanding phosphoryl transfer in PPases at the quantum mechanical level. Ultra-high resolution structures can thus tease out overlapping complexes and so are as relevant to discussion of enzyme mechanism as structures produced by time-resolved crystallography.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Density functional theory calculations were used to investigate the mechanisms of NO-carbon and N2O-carbon reactions. It was the first time that the importance of surface nitrogen groups was addressed in the kinetic behaviors of the NO-carbon reaction. It was found that the off-plane nitrogen groups that are adjacent to the zigzag edge sites and in-plane nitrogen groups that are located on the armchair sites make the bond energy of oxygen desorption even ca. 20% lower than that of the off-plane epoxy group adjacent to zigzag edge sites and in-plane o-quinone oxygen atoms on armchair sites; this may explain the reason why the experimentally obtained activation energy of the NO-carbon reaction is ca. 20% lower than that of the O-2-carbon reaction over 923 K. A higher ratio of oxygen atoms can be formed in the N2O-carbon reaction, because of the lower dissociation energy of N2O, which results in a higher ratio of off-plane epoxy oxygen atoms. The desorption energy of semiquinone with double adjacent off-plane oxygen groups is ca. 20% less than that of semiquinone with only one adjacent off-plane oxygen group. This may be the reason why the activation energy of N2O is also ca. 20% less than that of the O-2-carbon reaction. The new mechanism can also provide a good qualitative comparison for the relative reaction rates of NO-, N2O-, and O-2-carbon reactions. The anisotropic characters of these gas-carbon reactions can also be well explained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose and investigate a hybrid optomechanical system consisting of a micro-mechanical oscillator coupled to the internal states of a distant ensemble of atoms. The interaction between the systems is mediated by a light field which allows the coupling of the two systems in a modular way over long distances. Coupling to internal degrees of freedom of atoms opens up the possibility to employ high-frequency mechanical resonators in the MHz to GHz regime, such as optomechanical crystal structures, and to benefit from the rich toolbox of quantum control over internal atomic states. Previous schemes involving atomic motional states are rather limited in both of these aspects. We derive a full quantum model for the effective coupling including the main sources of decoherence. As an application we show that sympathetic ground-state cooling and strong coupling between the two systems is possible.