905 resultados para Quantum computational complexity


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this letter, we propose a reduced-complexity implementation of partial interference cancellation group decoder with successive interference cancellation (PIC-GD-SIC) by employing the theory of displacement structures. The proposed algorithm exploits the block-Toeplitz structure of the effective matrix and chooses an ordering of the groups such that the zero-forcing matrices associated with the various groups are obtained through Schur recursions without any approximations. We show using an example that the proposed implementation offers a significantly reduced computational complexity compared to the direct approach without any loss in performance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

QR decomposition (QRD) is a widely used Numerical Linear Algebra (NLA) kernel with applications ranging from SONAR beamforming to wireless MIMO receivers. In this paper, we propose a novel Givens Rotation (GR) based QRD (GR QRD) where we reduce the computational complexity of GR and exploit higher degree of parallelism. This low complexity Column-wise GR (CGR) can annihilate multiple elements of a column of a matrix simultaneously. The algorithm is first realized on a Two-Dimensional (2 D) systolic array and then implemented on REDEFINE which is a Coarse Grained run-time Reconfigurable Architecture (CGRA). We benchmark the proposed implementation against state-of-the-art implementations to report better throughput, convergence and scalability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider optimal power allocation policies for a single server, multiuser system. The power is consumed in transmission of data only. The transmission channel may experience multipath fading. We obtain very efficient, low computational complexity algorithms which minimize power and ensure stability of the data queues. We also obtain policies when the users may have mean delay constraints. If the power required is a linear function of rate then we exploit linearity and obtain linear programs with low complexity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider near-optimal policies for a single user transmitting on a wireless channel which minimize average queue length under average power constraint. The power is consumed in transmission of data only. We consider the case when the power used in transmission is a linear function of the data transmitted. The transmission channel may experience multipath fading. Later, we also extend these results to the multiuser case. We show that our policies can be used in a system with energy harvesting sources at the transmitter. Next we consider data users which require minimum rate guarantees. Finally we consider the system which has both data and real time users. Our policies have low computational complexity, closed form expression for mean delays and require only the mean arrival rate with no queue length information.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An accurate description of atomic interactions, such as that provided by first principles quantum mechanics, is fundamental to realistic prediction of the properties that govern plasticity, fracture or crack propagation in metals. However, the computational complexity associated with modern schemes explicitly based on quantum mechanics limits their applications to systems of a few hundreds of atoms at most. This thesis investigates the application of the Gaussian Approximation Potential (GAP) scheme to atomistic modelling of tungsten - a bcc transition metal which exhibits a brittle-to-ductile transition and whose plasticity behaviour is controlled by the properties of $\frac{1}{2} \langle 111 \rangle$ screw dislocations. We apply Gaussian process regression to interpolate the quantum-mechanical (QM) potential energy surface from a set of points in atomic configuration space. Our training data is based on QM information that is computed directly using density functional theory (DFT). To perform the fitting, we represent atomic environments using a set of rotationally, permutationally and reflection invariant parameters which act as the independent variables in our equations of non-parametric, non-linear regression. We develop a protocol for generating GAP models capable of describing lattice defects in metals by building a series of interatomic potentials for tungsten. We then demonstrate that a GAP potential based on a Smooth Overlap of Atomic Positions (SOAP) covariance function provides a description of the $\frac{1}{2} \langle 111 \rangle$ screw dislocation that is in agreement with the DFT model. We use this potential to simulate the mobility of $\frac{1}{2} \langle 111 \rangle$ screw dislocations by computing the Peierls barrier and model dislocation-vacancy interactions to QM accuracy in a system containing more than 100,000 atoms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The computer science technique of computational complexity analysis can provide powerful insights into the algorithm-neutral analysis of information processing tasks. Here we show that a simple, theory-neutral linguistic model of syntactic agreement and ambiguity demonstrates that natural language parsing may be computationally intractable. Significantly, we show that it may be syntactic features rather than rules that can cause this difficulty. Informally, human languages and the computationally intractable Satisfiability (SAT) problem share two costly computional mechanisms: both enforce agreement among symbols across unbounded distances (Subject-Verb agreement) and both allow ambiguity (is a word a Noun or a Verb?).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The primary goal of this report is to demonstrate how considerations from computational complexity theory can inform grammatical theorizing. To this end, generalized phrase structure grammar (GPSG) linguistic theory is revised so that its power more closely matches the limited ability of an ideal speaker--hearer: GPSG Recognition is EXP-POLY time hard, while Revised GPSG Recognition is NP-complete. A second goal is to provide a theoretical framework within which to better understand the wide range of existing GPSG models, embodied in formal definitions as well as in implemented computer programs. A grammar for English and an informal explanation of the GPSG/RGPSG syntactic features are included in appendices.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider a fault model of Boolean gates, both classical and quantum, where some of the inputs may not be connected to the actual gate hardware. This model is somewhat similar to the stuck-at model which is a very popular model in testing Boolean circuits. We consider the problem of detecting such faults; the detection algorithm can query the faulty gate and its complexity is the number of such queries. This problem is related to determining the sensitivity of Boolean functions. We show how quantum parallelism can be used to detect such faults. Specifically, we show that a quantum algorithm can detect such faults more efficiently than a classical algorithm for a Parity gate and an AND gate. We give explicit constructions of quantum detector algorithms and show lower bounds for classical algorithms. We show that the model for detecting such faults is similar to algebraic decision trees and extend some known results from quantum query complexity to prove some of our results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is shown that determining whether a quantum computation has a non-zero probability of accepting is at least as hard as the polynomial time hierarchy. This hardness result also applies to determining in general whether a given quantum basis state appears with nonzero amplitude in a superposition, or whether a given quantum bit has positive expectation value at the end of a quantum computation. This result is achieved by showing that the complexity class NQP of Adleman, Demarrais, and Huang, a quantum analog of NP, is equal to the counting class coC=P.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We survey recent results on the computational complexity of mixed shop scheduling problems. In a mixed shop, some jobs have fixed machine orders (as in the job shop), while the operations of the other jobs may be processed in arbitrary order (as in the open shop). The main attention is devoted to establishing the boundary between polynomially solvable and NP-hard problems. When the number of operations per job is unlimited, we focus on problems with a fixed number of jobs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The development of high performance, low computational complexity detection algorithms is a key challenge for real-time Multiple-Input Multiple-Output (MIMO) communication system design. The Fixed-Complexity Sphere Decoder (FSD) algorithm is one of the most promising approaches, enabling quasi-ML decoding accuracy and high performance implementation due to its deterministic, highly parallel structure. However, it suffers from exponential growth in computational complexity as the number of MIMO transmit antennas increases, critically limiting its scalability to larger MIMO system topologies. In this paper, we present a solution to this problem by applying a novel cutting protocol to the decoding tree of a real-valued FSD algorithm. The new Real-valued Fixed-Complexity Sphere Decoder (RFSD) algorithm derived achieves similar quasi-ML decoding performance as FSD, but with an average 70% reduction in computational complexity, as we demonstrate from both theoretical and implementation perspectives for Quadrature Amplitude Modulation (QAM)-MIMO systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Orthogonal frequency division multiplexing (OFDM) requires an expensive linear amplifier at the transmitter due to its high peak-to-average power ratio (PAPR). Single carrier with cyclic prefix (SC-CP) is a closely related transmission scheme that possesses most of the benefits of OFDM but does not have the PAPR problem. Although in a multipath environment, SC-CP is very robust to frequency-selective fading, it is sensitive to the time-selective fading characteristics of the wireless channel that disturbs the orthogonality of the channel matrix (CM) and increases the computational complexity of the receiver. In this paper, we propose a time-domain low-complexity iterative algorithm to compensate for the effects of time selectivity of the channel that exploits the sparsity present in the channel convolution matrix. Simulation results show the superior performance of the proposed algorithm over the standard linear minimum mean-square error (L-MMSE) equalizer for SC-CP.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Modern Multiple-Input Multiple-Output (MIMO) communication systems place huge demands on embedded processing resources in terms of throughput, latency and resource utilization. State-of-the-art MIMO detector algorithms, such as Fixed-Complexity Sphere Decoding (FSD), rely on efficient channel preprocessing involving numerous calculations of the pseudo-inverse of the channel matrix by QR Decomposition (QRD) and ordering. These highly complicated operations can quickly become the critical prerequisite for real-time MIMO detection, exaggerated as the number of antennas in a MIMO detector increases. This paper describes a sorted QR decomposition (SQRD) algorithm extended for FSD, which significantly reduces the complexity and latency
of this preprocessing step and increases the throughput of MIMO detection. It merges the calculations of the QRD and ordering operations to avoid multiple iterations of QRD. Specifically, it shows that SQRD reduces the computational complexity by over 60-70% when compared to conventional
MIMO preprocessing algorithms. In 4x4 to 7x7 MIMO cases, the approach suffers merely 0.16-0.2 dB reduction in Bit Error Rate (BER) performance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Credal networks are graph-based statistical models whose parameters take values in a set, instead of being sharply specified as in traditional statistical models (e.g., Bayesian networks). The computational complexity of inferences on such models depends on the irrelevance/independence concept adopted. In this paper, we study inferential complexity under the concepts of epistemic irrelevance and strong independence. We show that inferences under strong independence are NP-hard even in trees with binary variables except for a single ternary one. We prove that under epistemic irrelevance the polynomial-time complexity of inferences in credal trees is not likely to extend to more general models (e.g., singly connected topologies). These results clearly distinguish networks that admit efficient inferences and those where inferences are most likely hard, and settle several open questions regarding their computational complexity. We show that these results remain valid even if we disallow the use of zero probabilities. We also show that the computation of bounds on the probability of the future state in a hidden Markov model is the same whether we assume epistemic irrelevance or strong independence, and we prove an analogous result for inference in Naive Bayes structures. These inferential equivalences are important for practitioners, as hidden Markov models and Naive Bayes networks are used in real applications of imprecise probability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Credal networks are graph-based statistical models whose parameters take values on a set, instead of being sharply specified as in traditional statistical models (e.g., Bayesian networks). The result of inferences with such models depends on the irrelevance/independence concept adopted. In this paper, we study the computational complexity of inferences under the concepts of epistemic irrelevance and strong independence. We strengthen complexity results by showing that inferences with strong independence are NP-hard even in credal trees with ternary variables, which indicates that tractable algorithms, including the existing one for epistemic trees, cannot be used for strong independence. We prove that the polynomial time of inferences in credal trees under epistemic irrelevance is not likely to extend to more general models, because the problem becomes NP-hard even in simple polytrees. These results draw a definite line between networks with efficient inferences and those where inferences are hard, and close several open questions regarding the computational complexity of such models.