877 resultados para Quality factor meters.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
La planificación y las políticas de transporte no pueden descuidar la calidad del servicio, considerando que influye notablemente en el cambio modal del coche hacia otros medios de transporte más sostenibles. El concepto se aplica también a los intercambiadores de transporte público, los nodos del sistema donde se cruzan las distintas redes del transporte público y privado. Aunque se han logrado numerosos avances para medir y evaluar la calidad en el sector del transporte público, se han dedicado relativamente pocos esfuerzos a investigar estos aspectos relacionados con la calidad de los intercambiadores del transporte público. Este trabajo de investigación se concentra en la calidad del servicio de la transferencia modal en los intercambiadores interurbanos, según la perspectiva de los viajeros. Su objetivo es identificar los factores clave de la calidad del servicio y los perfiles de los viajeros en los intercambiadores. La investigación es exploratoria y ofrece información acerca de la percepción de los viajeros intermodales relacionada con los aspectos de la calidad, aportando nuevos elementos y datos para adentrarse en estudios más detallados. La metodología del trabajo combina técnicas de análisis estadístico multivariante para analizar los datos de las encuestas sobre la satisfacción de los clientes y se subdivide en tres etapas. En primer lugar, se ha implementado el análisis de correspondencias múltiples para explorar los constructos latentes relacionados con la satisfacción de las características cualitativas de los intercambiadores interurbanos, identificando así los factores clave de la calidad. En segundo lugar, se ha aplicado un análisis de conglomerados de k-medias sobre los factores clave de calidad para clasificar a los viajeros en grupos de usuarios de transportes homogéneos, de acuerdo con su percepción de satisfacción, identificando de este modo los perfiles de los viajeros. Por último, se han formulado sugerencias y recomendaciones sobre la calidad para respaldar la formulación de políticas, estableciendo las prioridades para los intercambiadores interurbanos. La metodología se aplicó en cuatro intercambiadores interurbanos (estaciones de ferrocarriles o de autobuses ) en Madrid, Zaragoza, Gothenburg y Lion, analizando los datos recogidos mediante una encuesta de satisfacción del cliente llevada a cabo en 2011 en los cuatro casos de estudio, donde se interconectan distintos medios de transporte público y privado, de corta y larga distancia. Se recogieron datos sobre la satisfacción de los viajeros con 26 criterios de calidad, así como información sobre aspectos socio-económicos y pautas de comportamiento de viajes. Mediante el análisis de correspondencias múltiples se identificaron 4-5 factores clave de calidad en cada intercambiador, que se asocian principalmente con el sistema de emisión de billetes, el confort y la interconexión, mientras que los viajeros no perciben los temas clásicos como la información. Mediante el análisis de conglomerados se identificaron 2-5 perfiles de viajeros en cada intercambiador. Se reconocieron dos grupos de viajeros en casi todos los casos de estudio: viajeros de cercanía/trabajadores y turistas. Por lo que concierne a las prioridades para apoyar a las partes interesadas en la formulación de políticas, la expedición de billetes es el factor clave para los intercambiadores interurbanos españoles, mientras que la interconexión y los aspectos temporales se destacan en los intercambiadores de Francia y Suecia. Quality of Service can not be neglected in public transport planning and policy making, since it strongly influences modal shifts from car to more sustainable modes. This concept is also related to Public Transport interchanges, the nodes of the transport system where the different sub-systems of public passenger transport and personal vehicles meet. Although a lot of progress has been generally done to measure and assess quality in public transport sector, relatively little investigation has been conducted on quality at PT interchanges. This research work focusses on Quality of Service in the use of transfer facilities at interurban interchanges, according to current travellers’ perspective. It aims at identifying key quality factors and travellers profiles at interurban interchanges. The research is exploratory and offers insight into intermodal travellers’ perception on quality aspects, providing new elements and inputs for more definitive investigation. The methodology of the work combines multivariate statistical techniques to analyse data from customer satisfaction surveys and is subdivided in three steps. Firstly, multiple correspondence analysis was performed to explore latent constructs as concern satisfaction of quality attributes at interurban interchanges, thus identifying the so-called Key Quality Factor. Secondly, k-means cluster analysis was implemented on the key quality factors to classify travellers in homogeneous groups of transport users, according to their perception of satisfaction, thus identifying the so-called Travellers Profiles. Finally, hints and recommendations on quality were identified to support policy making, setting priorities for interurban interchanges. The methodology was applied at four interurban interchanges in Madrid, Zaragoza, Gothenburg and Lyon, analysing the data collected through a customer satisfaction survey carried out in 2011 at the four railway or bus stations where different modes of public and private transport are interconnected covering both short and long trips. Data on travellers’ satisfaction with 26 quality attributes were collected, as well as information on socio-economical and travel patterns. Through multiple correspondence analysis were identified 4-5 key quality factors per interchange. They are mainly related to ticketing, comfort and connectivity, while classical issues, as information, are not perceived as important by travellers’. Through cluster analysis were identified 2-5 travellers profiles per interchange. Two groups of travellers can be found in almost all case studies: commuter / business travellers and holiday travellers. As regards the priorities to support stakeholders in policy making, ticketing is the key-issue for the Spanish interurban interchanges, while connectivity and temporal issues emerge in the French and Swedish case studies.
Resumo:
Based on the molecular dynamics (MD) simulation and the classical Euler-Bernoulli beam theory, a fundamental study of the vibrational performance of the Ag nanowire (NW) is carried out. A comprehensive analysis of the quality (Q)-factor, natural frequency, beat vibration, as well as high vibration mode is presented. Two excitation approaches, i.e., velocity excitation and displacement excitation, have been successfully implemented to achieve the vibration of NWs. Upon these two kinds of excitations, consistent results are obtained, i.e., the increase of the initial excitation amplitude will lead to a decrease to the Q-factor, and moderate plastic deformation could increase the first natural frequency. Meanwhile, the beat vibration driven by a single relatively large excitation or two uniform excitations in both two lateral directions is observed. It is concluded that the nonlinear changing trend of external energy magnitude does not necessarily mean a nonconstant Q-factor. In particular, the first order natural frequency of the Ag NW is observed to decrease with the increase of temperature. Furthermore, comparing with the predictions by Euler- Bernoulli beam theory, the MD simulation provides a larger and smaller first vibration frequencies for the clamped-clamped and clamped-free thin Ag NWs, respectively. Additionally, for thin NWs, the first order natural frequency exhibits a parabolic relationship with the excitation magnitudes. The frequencies of the higher vibration modes tend to be low in comparison to Euler-Bernoulli beam theory predictions. A combined initial excitation is proposed which is capable to drive the NW under a multi-mode vibration and arrows the coexistence of all the following low vibration modes. This work sheds lights on the better understanding of the mechanical properties of NWs and benefits the increasing utilities of NWs in diverse nano-electronic devices.
Resumo:
Given the paradigm of smart grid as the promising backbone for future network, this paper uses this paradigm to propose a new coordination approach for LV network based on distributed control algorithm. This approach divides the LV network into hierarchical communities where each community is controlled by a control agent. Different level of communication has been proposed for this structure to control the network in different operation modes.
Resumo:
Metal and semiconductor nanowires (NWs) have been widely employed as the building blocks of the nanoelectromechanical systems, which usually acted a resonant beam. Recent researches reported that nanowires are often polycrystalline, which contains grain boundaries (GBs) that transect the whole nanowire into a bamboo like structure. Based on the larger-scale molecular dynamics (MD) simulations, a comprehensive investigation of the influence from grain boundaries on the vibrational properties of doubly clamped Ag NWs is conducted. It is found that, the presence of grain boundary will result in significant energy dissipation during the resonance of polycrystalline NWs, which leads a great deterioration to the quality factor. Further investigation reveals that the energy dissipation is originated from the plastic deformation of polycrystalline NWs in the form of the nucleation of partial dislocations or the generation of micro stacking faults around the GBs and the micro stacking faults is found to keep almost intact during the whole vibration process. Moreover, it is observed that the closer of the grain boundary getting to the regions with the highest strain state, the more energy dissipation will be resulted from the plastic deformation. In addition, either the increase of the number of grain boundaries or the decrease of the distance between the grain boundary and the highest strain state region is observed to induce a lower first resonance frequency. This work sheds lights on the better understanding of the mechanical properties of polycrystalline NWs, which benefits the increasing utilities of NWs in diverse nano-electronic devices.
Resumo:
Nanowires (NWs) have attracted appealing and broad application owing to their remarkable mechanical, optical, electrical, thermal and other properties. To unlock the revolutionary characteristics of NWs, a considerable body of experimental and theoretical work has been conducted. However, due to the extremely small dimensions of NWs, the application and manipulation of the in situ experiments involve inherent complexities and huge challenges. For the same reason, the presence of defects appears as one of the most dominant factors in determining their properties. Hence, based on the experiments' deficiency and the necessity of investigating different defects' influence, the numerical simulation or modelling becomes increasingly important in the area of characterizing the properties of NWs. It has been noted that, despite the number of numerical studies of NWs, significant work still lies ahead in terms of problem formulation, interpretation of results, identification and delineation of deformation mechanisms, and constitutive characterization of behaviour. Therefore, the primary aim of this study was to characterize both perfect and defected metal NWs. Large-scale molecular dynamics (MD) simulations were utilized to assess the mechanical properties and deformation mechanisms of different NWs under diverse loading conditions including tension, compression, bending, vibration and torsion. The target samples include different FCC metal NWs (e.g., Cu, Ag, Au NWs), which were either in a perfect crystal structure or constructed with different defects (e.g. pre-existing surface/internal defects, grain/twin boundaries). It has been found from the tensile deformation that Young's modulus was insensitive to different styles of pre-existing defects, whereas the yield strength showed considerable reduction. The deformation mechanisms were found to be greatly influenced by the presence of defects, i.e., different defects acted in the role of dislocation sources, and many affluent deformation mechanisms had been triggered. Similar conclusions were also obtained from the compressive deformation, i.e., Young's modulus was insensitive to different defects, but the critical stress showed evident reduction. Results from the bending deformation revealed that the current modified beam models with the considerations of surface effect, or both surface effect and axial extension effect were still experiencing certain inaccuracy, especially for the NW with ultra small cross-sectional size. Additionally, the flexural rigidity of the NW was found to be insensitive to different pre-existing defects, while the yield strength showed an evident decrease. For the resonance study, the first-order natural frequency of the NW with pre-existing surface defects was almost the same as that from the perfect NW, whereas a lower first-order natural frequency and a significantly degraded quality factor was observed for NWs with grain boundaries. Most importantly, the <110> FCC NWs were found to exhibit a novel beat phenomenon driven by a single actuation, which was resulted from the asymmetry in the lattice spacing in the (110) plane of the NW cross-section, and expected to exert crucial impacts on the in situ nanomechanical measurements. In particular, <110> Ag NWs with rhombic, truncated rhombic, and triangular cross-sections were found to naturally possess two first-mode natural frequencies, which were envisioned with applications in NEMS that could operate in a non-planar regime. The torsion results revealed that the torsional rigidity of the NW was insensitive to the presence of pre-existing defects and twin boundaries, but received evident reduction due to grain boundaries. Meanwhile, the critical angle decreased considerably for defected NWs. This study has provided a comprehensive and deep investigation on the mechanical properties and deformation mechanisms of perfect and defected NWs, which will greatly extend and enhance the existing knowledge and understanding of the properties/performance of NWs, and eventually benefit the realization of their full potential applications. All delineated MD models and theoretical analysis techniques that were established for the target NWs in this research are also applicable to future studies on other kinds of NWs. It has been suggested that MD simulation is an effective and excellent tool, not only for the characterization of the properties of NWs, but also for the prediction of novel or unexpected properties.
Resumo:
Graphene-based resonators are envisioned to build the ultimate limit of two-dimensional nanoelectromechanical system due to their ultrasensitive detection of mass, force, pressure and charge. However, such application has been greatly impeded by their extremely low quality factor. In the present work, we explore, using the large-scale molecular dynamics simulation, the possibility of tailoring the resonance properties of a bilayer graphene sheet (GS) with interlayer sp3 bonds. For the bilayer GS resonator with interlayer sp3 bonds, we discovered that the sp3 bonds can either degrade or enhance the resonance properties of the resonator depending on their density and location. It is found that the distribution of sp3 bonds only along the edges of either pristine or hydrogenated bilayer GS, leads to a greatly enhanced quality factor. A quality factor of ~1.18×105 is observed for a 3.07×15.31 nm2 bilayer GS resonator with sp3 bonds, which is more than 30 times larger comparing with that of a pristine bilayer GS. The present study demonstrates that the resonance properties of a bilayer GS resonator can be tuned by introducing sp3 bonds. This finding provides a useful guideline for the synthesis of the bilayer GS for its application as a resonator component.
Resumo:
Based on its enticing properties, graphene has been envisioned with applications in the area of electronics, photonics, sensors, bioapplications and others. To facilitate various applications, doping has been frequently used to manipulate the properties of graphene. Despite a number of studies conducted on doped graphene regarding its electrical and chemical properties, the impact of doping on the mechanical properties of graphene has been rarely discussed. A systematic study of the vibrational properties of graphene doped with nitrogen and boron is performed by means of a molecular dynamics simulation. The influence from different density or species of dopants has been assessed. It is found that the impacts on the quality factor, Q, resulting from different densities of dopants vary greatly, while the influence on the resonance frequency is insignificant. The reduction of the resonance frequency caused by doping with boron only is larger than the reduction caused by doping with both boron and nitrogen. This study gives a fundamental understanding of the resonance of graphene with different dopants, which may benefit their application as resonators.
Half-wave cycloconverter-based photovoltaic microinverter topology with phase-shift power modulation
Resumo:
A grid-connected microinverter with a reduced number of power conversion stages and fewer passive components is proposed. A high-frequency transformer and a series-resonant tank are used to interface the full-bridge inverter to the half-wave cycloconverter. All power switches are switched with zero-voltage switching. Phase-shift power modulation is used to control the output power of the inverter. A steady-state analysis of the proposed topology is presented to determine the average output power of the inverter. Analysis of soft switching of the full-bridge and the half-wave cycloconverter is presented with respect to voltage gain, quality factor, and phase shift of the inverter. Simulation and experimental results are presented to validate the operation of the proposed topology.
Resumo:
Doping as one of the popular methods to manipulate the properties of nanomaterials has received extensive application in deriving different types of graphene derivates, while the understanding of the resonance properties of dopant graphene is still lacking in literature. Based on the large-scale molecular dynamics simulation, reactive empirical bond order potential, as well as the tersoff potential, the resonance properties of N-doped graphene were studied. The studied samples were established according to previous experiments with the N atom’s percentage ranging from 0.43%-2.98%, including three types of N dopant locations, i.e., graphitic N, pyrrolic N and pyridinic N. It is found that different percentages of N-dopant exert different influence to the resonance properties of the graphene, while the amount of N-dopant is not the only factor that determines its impact. For all the considered cases, a relative large percentage of N-dopant (2.98% graphitic N-dopant) is observed to introduce significant influence to the profile of the external energy, and thus lead to an extremely low Q-factor comparing with that of the pristine graphene. The most striking finding is that, the natural frequency of the defective graphene with N-dopant appears uniformly larger than that of the pristine defective graphene. While for the perfect graphene, the N-dopant shows less influence to its natural frequency. This study will enrich the current understanding of the influence of dopants on graphene, which will eventually shed lights on the design of different molecules-doped graphene sheet.
Resumo:
The effect of charged particulates or dusts on surface wave produced microwave discharges is studied. The frequencies of the standing electromagnetic eigenmodes of large-area flat plasmas are calculated. The dusts absorb a significant amount of the plasma electrons and can lead to a modification of the electromagnetic field structure in the discharge by shifting the originally excited operating mode out of resonance. For certain given proportions of dusts, mode conversion is found to be possible. The power loss in the discharge is also increased because of dust-specific dissipations, leading to a decrease of the operating mode quality factor.
Resumo:
Achieving high efficiency with improved power transfer range and misalignment tolerance is the major design challenge in realizing Wireless Power Transfer (WPT) systems for industrial applications. Resonant coils must be carefully designed to achieve highest possible system performance by fully utilizing the available space. High quality factor and enhanced electromagnetic coupling are key indices which determine the system performance. In this paper, design parameter extraction and quality factor optimization of multi layered helical coils are presented using finite element analysis (FEA) simulations. In addition, a novel Toroidal Shaped Spiral (TSS) coil is proposed to increase power transfer range and misalignment tolerance. The proposed shapes and recommendations can be used to design high efficiency WPT resonator in a limited space.
Resumo:
The capabilities of the mechanical resonator-based nanosensors in detecting ultra-small mass or force shifts have driven a continuing exploration of the palette of nanomaterials for such application purposes. Based on large-scale molecular dynamics simulations, we have assessed the applicability of a new class of carbon nanomaterials for nanoresonator usage, i.e. the single-wall carbon nanotube (SWNT) network. It is found that SWNT networks inherit excellent mechanical properties from the constituent SWNTs, possessing a high natural frequency. However, although a high quality factor is suggested from the simulation results, it is hard to obtain an unambiguous Q-factor due to the existence of vibration modes in addition to the dominant mode. The nonlinearities resulting from these extra vibration modes are found to exist uniformly under various testing conditions including different initial actuations and temperatures. Further testing shows that these modes can be effectively suppressed through the introduction of axial strain, leading to an extremely high quality factor in the order of 109 estimated from the SWNT network with 2% tensile strain. Additional studies indicate that the carbon rings connecting the SWNTs can also be used to alter the vibrational properties of the resulting network. This study suggests that the SWNT network can be a good candidate for applications as nanoresonators.
Resumo:
In this paper, we present the design and characterization of a vibratory yaw rate MEMS sensor that uses in-plane motion for both actuation and sensing. The design criterion for the rate sensor is based on a high sensitivity and low bandwidth. The required sensitivity of the yawrate sensor is attained by using the inplane motion in which the dominant damping mechanism is the fluid loss due to slide film damping i.e. two-three orders of magnitude less than the squeeze-film damping in other rate sensors with out-of-plane motion. The low bandwidth is achieved by matching the drive and the sense mode frequencies. Based on these factors, the yaw rate sensor is designed and finally realized using surface micromachining. The inplane motion of the sensor is experimentally characterized to determine the sense and the drive mode frequencies, and corresponding damping ratios. It is found that the experimental results match well with the numerical and the analytical models with less than 5% error in frequencies measurements. The measured quality factor of the sensor is approximately 467, which is two orders of magnitude higher than that for a similar rate sensor with out-of-plane sense direction.
Resumo:
Phase-pure samples of barium magnesiotitanate, BaMg6Ti6O19 (BMT) are prepared by the wet chemical `gel-carbonate' method wherein the formation of BMT is complete below 950 degrees C as a result of the reaction between nanoparticles of BaCO3, MgO and TiO2. BMT powders are sintered at 1350-1450 C to dense ceramics. Extensive melting is noticed when the bulk composition falls between 0.4MgTiO(3)+0.6BaTiO(3)) and (0.6MgTiO(3)+0.4BaTiO(3)) along the MgTiO3-BaTiO3 tie-line in BaO-MgO-TiO2, phase diagram. Dielectric properties of sintered (BMT) ceramics have been investigated which showed epsilon similar or equal to 39 at 2 GHz, quality factor Q >= 10,000 and positive temperature coefficient of dielectric constant around 370 ppm degrees C-1.