987 resultados para QUINOLINE-FLUORENE BASED COPOLYMER


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the focus on developing new polymer electrolytes continues to intensify in the area of alternative energy conversion and storage devices, the rational design of polyelectrolytes with high single ion transport rates has emerged as a primary strategy for enhancing device performance. Previously, we reported a series of sulfonate based copolymer ionomers based on using mixed bulky quaternary ammonium cations and sodium cations as the ionomer counterions. This led to improvements in the ionic conductivity and an apparent decoupling from the Tg of the ionomer. In this article, we have prepared a new series of ionomers based on the homopolymer of poly(2-acrylamido-2-methyl-1-propane-sulfonic acid) using differing sizes of the ammonium counter-cations. We observe a decreasing Tg with increasing the bulkiness of the quaternary ammonium cation, and an increasing degree of decoupling from Tg within these systems. Somewhat surprisingly, phase separation is observed in this homopolymer system, as evidenced from multiple impedance arcs, Raman mapping and SEM. The thermal properties, morphology and the effect of plasticizer on the transport properties in these ionomers are also presented. The addition of 10 wt% plasticizer increased the ionic conductivity between two and three orders of magnitudes leading to materials that may have applications in sodium based devices. This journal is

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work investigated the effect of woven E-glass mass (25 g/m2, 50 g/m2, 85 g/m2, 135 g/m2) on the painted surface finish of various thermoset (EPIKOTETM RIM935, EPIKOTETM 04434, Ultratec LpTM ES300, Ultratec LpTM SPV6035) carbon fibre composite laminates, before and after aging at 95 °C for 168 h. The as-moulded laminate surfaces were evaluated using surface profilometry techniques and the painted and aged surfaces were evaluated using a wave-scan distinctness of image (DOI) instrument. It was found that the 25 g/m2 E-glass surface layer assisted with reducing the roughness of the as-moulded surfaces and the long-term waviness of the painted surfaces due to the increase in resin-richness at the surface. The EPIKOTETM 04434 resin system that contained diglycidyl ether of bisphenol F (DGEBF) epoxy had the least change in long-term waviness with thermal aging due to the rigid fluorene-based backbone in comparison to the diglycidyl ether of bisphenol A (DGEBA) systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluorene-based systems have shown great potential as components in organic electronics and optoelectronics (organic photovoltaics, OPVs, organic light emitting diodes, OLEDs, and organic transistors, OTFTs). These systems have drawn attention primarily because they exhibit strong blue emission associated with relatively good thermal stability. It is well-known that the electronic properties of polymers are directly related to the molecular conformations and chain packing of polymers. Here, we used three oligofluorenes (trimer, pentamer, and heptamer) as model systems to theoretically investigate the conformational properties of fluorene molecules, starting with the identification of preferred conformations. The hybrid exchange correlation functional, OPBE, and ZINDO/S-CI showed that each oligomer exhibits a tendency to adopt a specific chain arrangement, which could be distinguished by comparing their UV/vis electronic absorption and C-13 NMR spectra. This feature was used to identify the preferred conformation of the oligomer chains in chloroform-cast films by comparing experimental and theoretical UV/vis and C-13 NMR spectra. Moreover, the oligomer chain packing and dynamics in the films were studied by DSC and several solid state NMR techniques, which indicated that the phase behavior of the films may be influenced by the tendency that each oligomeric chain has to adopt a given conformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluorene-based polymers are widely known materials due to a combination of features such as photoluminescence and electroluminescence, oxidative stability, and film-forming ability. However, studies reporting nonlinear optical properties in this class of conjugated polymer are scarce. Here, we report a new class of polyfluorene derivatives poly(9,9'-n-dihexyl-2,7-fluorenedilvinylene-alt-1,4-phenylenevinylene), poly(9,9'-n-dihexyl-2,7-fluorenedilvinylene-alt-2,5-thiophene), and poly[(9,9-di-hexylfluorenediylvinylene-alt-1,4-phenylenevinylene)-co-((9,9'-(3-t-butylpropanoate) fluorene-1,4-phenylene)] displaying high two-photon absorption (2PA) in the spectral range from a 490 to 1100 nm. The 2PA cross-section peak values for these materials are as high as 3000 Goppert Mayer (1 GM = 1 x 10-50 cm4 s/photon), which is related to the high degree of conjugation along the polymer backbone. The polymers that were used in this study presented a strong two-photon luminescence and also displayed optical limiting behavior, which, in combination with their well-established properties, make them highly suitable for nonlinear optical devices. (C) 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 50: 148153, 2012

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis was focused on the investigation of the linear optical properties of novel two photon absorbers for biomedical applications. Substituted imidazole and imidazopyridine derivatives, and organic dendrimers were studied as potential fluorophores for two photon bioimaging. The results obtained showed superior luminescence properties for sulphonamido imidazole derivatives compared to other substituted imidazoles. Imidazo[1,2-a]pyridines exhibited an important dependence on the substitution pattern of their luminescence properties. Substitution at imidazole ring led to a higher fluorescence yield than the substitution at the pyridine one. Bis-imidazo[1,2-a]pyridines of Donor-Acceptor-Donor type were examined. Bis-imidazo[1,2-a]pyridines dimerized at C3 position had better luminescence properties than those dimerized at C5, displaying high emission yields and important 2PA cross sections. Phosphazene-based dendrimers with fluorene branches and cationic charges on the periphery were also examined. Due to aggregation phenomena in polar solvents, the dendrimers registered a significant loss of luminescence with respect to fluorene chromophore model. An improved design of more rigid chromophores yields enhanced luminescence properties which, connected to large 2PA cross-sections, make this compounds valuable as fluorophores in bioimaging. The photophysical study of several ketocoumarine initiators, designed for the fabrication of small dimension prostheses by two photon polymerization (2PP) was carried out. The compounds showed low emission yields, indicative of a high population of the triplet excited state, which is the active state in producing the reactive species. Their efficiency in 2PP was proved by fabrication of microstructures and their biocompatibility was tested in the collaborator’s laboratory. In the frame of the 2PA photorelease of drugs, three fluorene-based dyads have been investigated. They were designed to release the gamma-aminobutyric acid via two photon induced electron transfer. The experimental data in polar solvents showed a fast electron transfer followed by an almost equally fast back electron transfer process, which indicate a poor optimization of the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogels are a unique class of polymers which swell, but do not dissolve in water. A range of 2-hydroxyethyl methacrylate based copolymer hydrogels have been synthesised and are described in this thesis. Initially, hydrogels were synthesised containing acryloylmorpholine, N,N-dimethyl acrylamide and N-vinyl pyrrolidone. Variations in structure and composition have been correlated with the sequence distribution, equilibrium water content (EWC) , mechanical and surface properties of the hydrogels. The sequence distribution was found to be dependant on the structure and reactivity of the monomers. The EWC was found to be dependant on the water structuring groups present in the hydrogel, although the water binding abilities were modified by steric effects. The mechanical properties were also investigated and were found to be dependant on the monomer structure, sequence distribution and the amount and nature of water in the hydrogel. The macroscopic surface properties of the hydrogels were probed using surface energy determinations and were found to be a function of the water content and the hydrogel composition. At a molecular level, surface properties were investigated using an in vitro ocular spoilation model and single protein adhesion studies. The results indicate that the sequence distribution and the polarity of the surface affect the adhesion of biological species. Finally, a range of 2-hydroxyethyl methacrylate based copolymer hydrogels containing both charged monomer groups and linear polyethers have been synthesised and described. Although variations in the EWC are observed with the structure of the monomers, it was observed that the EWC increased due to the polar character of the charged monomers and the chain length and hydrophilicity of the polyethers. Investigation of these hydrogel surfaces revealed subtle changes. The molecular surface properties indicate the significance of the effect of charge and molecular mobility of the groups expressed at the hydrogel surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research described within this thesis is concerned with the investigation of transition metal ion complexation within hydrophilic copolymer membranes. The membranes are copolymers of 4-methyl-4'-vinyl-2,2'-bipyridine, the 2-hydroxyethyl ester of 4,4'- dicarboxy-2,2'-bipyridine & bis-(5-vinylsalicylidene)ethylenediamine with 2-hydroxyethyl methacrylate. The effect of the polymer matrix on the formation and properties of transition metal iron complexes has been studied, specifically Cr(III) & Fe(II) salts for the bipyridyl- based copolymer membranes and Co(II), Ni(II) & Cu(II) salts for the salenH2- based copolymer membranes. The concomitant effect of complex formation on the properties of the polymer matrix have also been studied, e.g. on mechanical strength. A detailed body of work into the kinetics and thermodynamics for the formation of Cu(II) complexes in the salenH2- based copolymer membranes has been performed. The rate of complex formation is found to be very slow while the value of K for the equilibrium of complex formation is found to be unexpectedly small and shows a slight anion dependence. These phenomena are explained in terms of the effects of the heterogeneous phase provided by the polymer matrix. The transport of Cr(III) ions across uncomplexed and Cr(III)-pre-complexed bipyridyl-based membranes has been studied. In both cases, no Cr(III) coordination occurs within the time-scale of an experiment. Pre-complexation of the membrane does not lead to a change in the rate of permeation of Cr(III) ions. The transport of Co(II), Ni(II) & Cu(II) ions across salenH2- based membranes shows that there is no detectable lag-time in transport of the ions, despite independent evidence that complex formation within the membranes does occur. Finally, the synthesis of a number of functionalised ligands is described. Although they were found to be non-polymerisable by the methods employed in this research, they remain interesting ligands which provide a startmg pomt for further functionalisation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogels are a unique class of polymer which swell, but do not dissolve in, water. A range of 2-hydroxyethyl methacrylate based copolymer hydrogels containing both cyclic and linear polyethers have been synthesised and are described in this thesis. Initially, cyclic polyethers were occluded within the polymer matrix and the transport properties investigated. The results indicated that the presence of an ionophore can be used to modulate ion transport and that ion transport is described by a dual-sorption mechanism. However, these studies were limited due to ionophore loss during hydration. Hence, the synthesis of a range of acrylate based crown ether monomers was considered. A pure sample of 4-acryolylaminobenzo-15-crown-5 was obtained and a terpolymer containing this monomer was prepared. Transport studies illustrated that the presence of a `bound' ionophore modulates ion transport in a similar way to the occluded systems. The transport properties of a series of terpolymers containing linear polyethers were then investigated. The results indicated that the dual-sorption mechanism is observed for these systems with group II metal cations while the transport of group I metal cations, with the exception of sodium, is enhanced. Finally, the equilibrium water contents (EWC) surface and mechanical properties of these terpolymers containing linear polyethers were examined. Although subtle variations in EWC are observed as the structure of the polyether side chain varies, generally EWC is enhanced due to the hydrophilicity of the polyether side chain. The macroscopic surface properties were investigated using a sessile drop technique and FTIR spectroscopy. At a molecular level surface properties were probed using an in vitro ocular spoilation model and preliminary cell adhesion studies. The results indicate that the polyethylene oxide side chains are expressed at the polymer surface thus reducing the adhesion of biological species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogels may be described as cross-linked hydrophilic polymers that swell but do not dissolve in water. The production of high water content hydrogels was the subject of investigation. Based upon copolymer compositions that had already achieved commercial success as biomaterials, new monomers were added or substituted in and the effects observed. The addition of N-isopropyl acrylamide to an acrylamide-based composition that had previously been designed to become a contact lens, produced materials that showed smart effects in that the water content showed dependence on the temperature of the hydrating solution. Such thermo-responsive materials have potential uses in drug delivery, ultrafiltration and cell culture surfaces. Proteoglycans in nature have an important role to play in structural support where a highly hydrophilic structure maintains lubricious surfaces. Certain functional groups that impart this hydrophilicity are present in certain sulphonate monomers, Bis(3-sulphopropyl ester) itaconate, dipotassium salt (SPI), 3-Sulphopropyl ester acrylate, potassium salt (SPA) and Sodium 2-(acrylamido)-2-methyl propane sulphonate (NaAMPS). These monomers were incorporated into a HEMA-based copolymer that had been designed initially as a contact lens and the resulting effects examined. Highly hydrophilic materials resulted that showed reduced protein deposition over the neutral core material. It is postulated that a sulphonate group would have a larger number of hydration shells around it than for example methacrylic acid, leading to more dynamic exchange and so reducing the adsorption of biological solutes. A cationic monomer was added to bring back the net anionic nature of the sulphonate hydrogels and the effects studied. Ionic interactions were found to cause a reduction in the water content of the resulting materials as the mobility of the network decreased, leading to stiffer but less extensible materials. The presence of a net dominant charge, whether negative or positive, appeared to act to reduce protein deposition, but increasing equivalence in the amount of both charges served to present a more 'neutral' surface and deposition subsequently increased. The grafting of hydrophilic hydrogel layers onto silicone elastomer was attempted and the results evaluated using dynamic contact angle measurements. Following plasma oxidation to reduce the surface energy barrier to aqueous grafting chemistry, it was found that the wettability of the modified elastomers could be significantly enhanced by such treatment. The SPA-grafted material in particular hinted at an osmotic drive for rehydration that may be exploited in biomaterials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese (doutorado)—Universidade de Brasília, Instituto de Química, Curso de Pós-Graduação em Química, 2016.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A series of red-light emitting electrophosphorescent polyfluorenes (PFs) with varying content of a quinoline-based iridium complex, (PPQ)(2)Ir(acac) (bis(2,4-diphenylquinolyl-N,C-2') iridium(acetylacetonate)), in the side chain are synthesized by Suzuki polycondensation. Because of the efficient Forster energy transfer from the PF main chain to (PPQ)(2)Ir(acac) and direct charge trapping on the complex, the electroluminescent emission from PF is nearly completely quenched, even though the amount of iridium complex I incorporated into the polymers is as low as 1 mol %. Based on a single-layer device configuration, a luminous efficiency of up to 5.0 cd A(-1) with a luminance of 2000 cd m(-2) and Commission Internationale de L'Eclairage coordinates of (0.63, 0.35) (x, y) is realized, which is far superior to that of previously reported red-light emitting PFs containing benzothiazole- and isoquinoline-based iridium complexes.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A new series of donor acceptor copolymers were synthesized via the Witting route and applied as an active layer in organic thin-films solar cells. These copolymers are composed of fluorene thiophene and phenylene thiophene units. The ratio between those was systematically varied, and copolymers containing 0%, 50%, and 75% of phenylene thiophene were characterized and evaluated when used in photovoltaic devices. The copolymers' composition, photophysical, electrical, and morphological properties are addressed and correlated with device performance. The 50% copolymer ratio was found to be the best copolymer of the series, yielding a power conversion efficiency (PCE) under air mass (AM) 1.5 conditions of 2.4% in the bilayer heterojunction with the C-60 molecule. Aiming at flexible electronics applications, solutions based on the heterojunction of this copolymer with PCBM (6,6-phenyl-C-61-butyric acid methyl ester) were also successfully deposited using an inkjet printing method and used as an active layer in solar cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this letter, the performance characteristics of top-gate and dual-gate thin-film transistors (TFTs) with active semiconductor layers consisting of diketopyrrolopyrrole-naphthalene copolymer are described. Optimized top-gate TFTs possess mobilities of up to 1 cm 2 /V s with low contact resistance and reduced hysteresis in air. Dual-gate devices possess higher drive currents as well as improved subthreshold and above threshold characteristics compared to single-gate devices. We also describe the reasons that dual-gate devices result in improved performance. The good stability of this polymer combined with their promising electrical properties make this material a very promising semiconductor for printable electronics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we report the device characteristics of ambipolar thin-film transistors (TFTs) based on a diketopyrrolopyrrole-benzothiadiazole copolymer. This polymer semiconductor exhibits the largest comparable electron and hole mobility values in a single organic semiconductor. The key to realizing such high mobility values, which are $0.5&cm}{2}/\hbox{V}̇\hbox{s, is molecular design, i.e., the use of suitable surface treatments of the source/drain contact electrodes and device architectures, particularly top-gate configurations. The subthreshold characteristics of the TFT devices are greatly improved by the use of dual-gate device geometry. We also report the first measurement of the velocity distribution of electron and hole velocities in an ambipolar organic semiconductor.