997 resultados para QUASI-CRYSTALLINE ALLOY


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure and the electrical and magnetic properties of an amorphous alloy containing approximately 80 at .% iron, 13 at.% phos phorus and 7 at.% carbon (Fe_(80)Fe_(13)C_7) obtained by rapid quenching from the liquid state have been studied. Transmission electron diffraction data confirm the amorphous nature of this alloy. An analysis of the radial distribution function obtained from X-ray diffraction data indicates that the number of nearest neighbors is approximately seven, at a distance of 2.6A. The structure of the alloy can be related to that of silicate glasses and is based on a random arrangement of trigonal prisms of Fe_2P and Fe_3C types in which the iron atoms have an average ligancy of seven. Electrical resistance measurements show that the alloys are metallic. A minimum in the electrical resistivity vs. temperature curve is observed between 10° K to 50° K depending on the specimen, and the temperature at which the minimum occurs is related to the degree of local ordering. The Fe-P-C amorphous alloys are ferromagnetic. The Curie temperature measured by the induction method and by Mossbauer spectroscopy is 315° C. The field dependence of the magneto-resistance at temperatures from liquid helium to room temperature is similar to that found in crystalline iron. The ordinary Hall coefficient is approximately 10^(-11) volt-cm/amp-G. The spontaneous Hall coefficient is about 0.6 x 10^(-9) volt-cm/amp-G and is practically independent of temperature from liquid helium temperature up to 300° c.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advances in nano-scale mechanical testing have brought about progress in the understanding of physical phenomena in materials and a measure of control in the fabrication of novel materials. In contrast to bulk materials that display size-invariant mechanical properties, sub-micron metallic samples show a critical dependence on sample size. The strength of nano-scale single crystalline metals is well-described by a power-law function, σαD-n, where D is a critical sample size and n is a experimentally-fit positive exponent. This relationship is attributed to source-driven plasticity and demonstrates a strengthening as the decreasing sample size begins to limit the size and number of dislocation sources. A full understanding of this size-dependence is complicated by the presence of microstructural features such as interfaces that can compete with the dominant dislocation-based deformation mechanisms. In this thesis, the effects of microstructural features such as grain boundaries and anisotropic crystallinity on nano-scale metals are investigated through uniaxial compression testing. We find that nano-sized Cu covered by a hard coating displays a Bauschinger effect and the emergence of this behavior can be explained through a simple dislocation-based analytic model. Al nano-pillars containing a single vertically-oriented coincident site lattice grain boundary are found to show similar deformation to single-crystalline nano-pillars with slip traces passing through the grain boundary. With increasing tilt angle of the grain boundary from the pillar axis, we observe a transition from dislocation-dominated deformation to grain boundary sliding. Crystallites are observed to shear along the grain boundary and molecular dynamics simulations reveal a mechanism of atomic migration that accommodates boundary sliding. We conclude with an analysis of the effects of inherent crystal anisotropy and alloying on the mechanical behavior of the Mg alloy, AZ31. Through comparison to pure Mg, we show that the size effect dominates the strength of samples below 10 μm, that differences in the size effect between hexagonal slip systems is due to the inherent crystal anisotropy, suggesting that the fundamental mechanism of the size effect in these slip systems is the same.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large grain, bulk Y-Ba-Cu-O (YBCO) high temperature superconductors (HTS) have significant potential for use in a variety of practical applications that incorporate powerful quasi-permanent magnets. In the present work, we investigate how the trapped field of such magnets can be improved by combining bulk YBCO with a soft FeNi, ferromagnetic alloy. This involves machining the alloy into components of various shapes, such as cylinders and rings, which are attached subsequently to the top surface of a solid, bulk HTS cylinder. The effect of these modifications on the magnetic hysteresis curve and trapped field of the bulk superconductor at 77 K are then studied using pick-up coil and Hall probe measurements. The experimental data are compared to finite element modelling of the magnetic flux distribution using Campbell's algorithm. Initially we establish the validity of the technique involving pick-up coils wrapped around the bulk superconductor to obtain its magnetic hysteresis curve in a non-destructive way and highlight the difference between the measured signal and the true magnetization of the sample. We then consider the properties of hybrid ferromagnet/superconductor (F/S) structures. Hall probe measurements, together with the results of the model, establish that flux lines curve outwards through the ferromagnet, which acts, effectively, like a magnetic short circuit. Magnetic hysteresis curves show that the effects of the superconductor and the ferromagnet simply add when the ferromagnet is saturated fully by the applied field. The trapped field of the hybrid structure is always larger than that of the superconductor alone below this saturation level, and especially when the applied field is removed. The results of the study show further that the beneficial effects on the trapped field are enhanced when the ferromagnet covers the entire surface of the superconductor for different ferromagnetic components of various shapes and fixed volume. © 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method is demonstrated to be effective in reducing mismatch-induced tensile stress and suppressing the formation of cracks by inserting InAlGaN interlayers during the growth of GaN upon Si (1 1 1) substrate. Compared with GaN film without quaternary interlayer, GaN layer grown on InAlGaN compliant layers shows a five times brighter integrated PL intensity and a (0 0 0 2) High-resolution X-ray diffraction (HRXRD) curve width of 18 arcmin. Its chi(min), derived from Rutherford backscattering spectrometry (RBS), is about 2.0%, which means that the crystalline quality of this layer is very good. Quaternary InAlGaN layers, which are used as buffer layers firstly, can play a compliant role to endure the large mismatch-induced stress and reduce cracks during the growth of GaN epitaxy. The mechanisms leading to crack density reduction are investigated and results show that the phase immiscibility and the weak In-N bond make interlayer to offer tenability in the lattice parameters and release the thermal stress. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of Si and Mg doping on the crystalline quality and In distribution in the InGaN films were studied by atomic force microscope (AFM), triple crystal X-ray diffraction (TCXRD) and Rutherford backscattering spectrometry (RBS). The undoped, Si-doped and Mg-doped InGaN films were grown by metalorganic chemical vapor deposition (MOCVD) on (0 0 0 1) sapphire substrates. The electronic concentration in the Si-doped InGaN is about 2 x 10(19) cm(-3). It is found that the crystalline quality and In distribution in InGaN is slightly affected by the Si doping. In the Mg doped-case, the hole concentration is about 4 x 10(18) cm(-3) after annealing treatment. The surface morphology and crystalline quality of the Mg-doped InGaN are deteriorated significantly compared with the undoped InGaN. The growth rate of Mg-doped InGaN is higher than the undoped InGaN. Mg doping enhances the In incorporation in the InGaN alloy. The increase in In composition in the growth direction is more severe than the undoped InGaN. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A quasi-thermodynamic model of metalorganic vapor phase epitaxy (MOVPE) growth of GaxAlyIn1-x-yN alloys has been proposed. In view of the complex growth behavior of GaxAlyIn1-x-yN, we focus our attention on the galliumrich quaternary alloys that are lattice matched to GaN, In0.15Ga0.85N or Al0.15Ga0.85N, which are widely used in the GaN-based optoelectronic devices. The relationship between GaAlInN alloy composition and input molar ratio of group III metalorganic compounds at various growth conditions has been calculated. The influence of growth temperature, nitrogen fraction in the carrier gas, input partial pressure of group III metalorganics, reactor pressure, V/III ratio and the decomposition rate of ammonia on the composition of deposited alloys are studied systematically. Based on these calculated results, we can find out the appropriate growth conditions for the MOVPE growth of GaxAlyIn1-x-yN alloy lattice matched to GaN, In0.15Ga0.85N or Al0.15Ga0.85N. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A quasi-thermodynamic analysis of the MOVPE growth of AlxGa1-xN alloy using TMGa, TMA1 and ammonia has been proposed. The effect of varying growth conditions (growth temperature, reactor pressure, input V/III ratio, hydrogen pressure fraction in the carrier gas and the decomposed fraction of ammonia) on the distribution coefficient of Al has been calculated. In the case of AlxGa1-xN, preferential incorporation of Al is predicted. The calculated relationship between input vapour and deposited solid composition has been compared with data in the literature. A good agreement between the calculated and the experimental composition shows that our improved model is suitable for applying to the AlxGa1-xN alloy grown by MOVPE. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We successfully applied the Green function theory in GW approximation to calculate the quasiparticle energies for semiconductors Si and GaAs. Ab initio pseudopotential method was adopted to generate basis wavefunctions and charge densities for calculating dielectric matrix elements and electron self-energies. To evaluate dynamical effects of screened interaction, GPP model was utilized to extend dieletric matrix elements from static results to finite frequencies. We give a full account of the theoretical background and the technical details for the first principle pseudopotential calculations of quasiparticle energies in semiconductors and insulators. Careful analyses are given for the effective and accurate evaluations of dielectric matrix elements and quasiparticle self-energies by using the symmetry properties of basis wavefunctions and eigenenergies. Good agreements between the calculated excitation energies and fundamental energy gaps and the experimental band structures were achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Cu-Zr amorphous alloy was studied as an electrocatalyst towards the electrochemical hydrogenation of nitrobenzene. The electrocatalyst was activated by chemical etching in HF solution. Resulted changes in the morphology, chemical composition and crystalline structure of the electrocatalyst surface were characterised by scanning electron microscopy, X-ray diffraction and Auger electron spectroscopy. The electrocatalytic properties of the Cu-Zr amorphous alloy were assessed by voltammetric measurements. Due to the formation and aggregation of Zr residue modified Cu nanocrystals on the surface caused by the selective dissolution of Zr components in the chemical etching, the activated amorphous alloy is an effective electrocatalyst for the electrochemical reduction reaction of nitrobenzene with aniline as the main product. The positive shift of the peak potential and accompanying increase in the value of peak current in voltammograms with increasing Cu content and decreasing Zr content of the alloy surface in the chemical etching are indicative of improved electrocatalytic activity. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Melt-spun ribbon and bulk samples in cylindrical rod form with diameter ranging from 2 mm to 4 mm of Ti40Cu40Zr10Ni10 alloy were prepared by melt-spinning technique and copper mould casting method, respectively. The microstructure, thermal stability and mechanical properties of the bulk samples were investigated. A completely glassy single phase is formed in the 2 mm rod sample. Increasing the diameter of the rod samples resulted in the formation of CuTi crystalline phase in the 3 mm and 4 mm rod samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microstructure and mechanical properties of peak-aged Mg-4.5Zn-xGd (x=0, 0.5, 1.0 and 1.5 wt.%) alloys have been investigated. The results showed that the grain size of the alloys was refined gradually with increasing Gd. Mg5Gd and Mg3Gd2Zn3 phases were found in the Gd-containing alloys. The strengths were greatly improved with Gd additions, and the highest strength level was obtained in the Mg-4.5Zn-1.5Gd alloy, in which the ultimate tensile strength and yield strength were 231 MPa and 113 MPa, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crystalline morphologies of spin-coated poly(L-lactic acid) (PLLA) thin films under different conditions are investigated mainly with atomic force microscopy (AFM) technique. When PLLA concentration in chloroform is varied from 0.01 to 1% gradually, disordered structure, rod-shape and larger spheres aggregates are observed in thin films subsequently. Under different annealing temperature, such as at 78, 102, 122 degrees C, respectively, we can find most rod-like crystalline aggregates. Interestingly, we observed that nucleation sites locate at the edge of the holes at the original crystalline stage. Then, these holes developed to form chrysanthemum-like and rods subsequently with annealing time meanwhile the size and the shape of crystalline aggregate are changed. In addition. effect of substrate and solvent on morphology is also discussed. On the other hand, the possible mechanism of crystalline morphology evolution is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crystallographic and electrochemical characteristics of ball-milled Ti45Zr35Ni17Cu3 +xNi (x = 0, 5, 10, 15 and 20 mass%) composite powders have been investigated. The powders are composed of amorphous, I- and Ni-phases when x increases from 5 to 20. With increasing x, the amount of Ni-phase increases but the quasi-lattice constant decreases. The maximum discharge capacity first increases as x increases from 0 to 15 and then decreases when x increases further from 15 to 20. The high-rate dischargeability and cycling stability increase monotonically with increasing x. The improvement of the electrochemical characteristics is ascribed to the metallic nickel particles highly dispersed in the alloys, which improves the electrochemical kinetic properties and prevents the oxidation of the alloy electrodes, as well as to the mixed structure of amorphous and icosahedral quasicrystal line phases, which enhances the hydrogen diffusivity in the bulk of the alloy electrodes and efficiently inhibits the pulverization of the alloy particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A bulk Ti45Zr35Ni17Cu3 alloy, which consisted of the icosahedral quasicrystalline phase, was prepared by mechanical alloying(MA) and subsequent pulse discharge sintering. Ti45Zr35Ni17Cu3 amorphous powders (with particle size < 50 mu m) were obtained after mechanical alloying for more than 150 h from the mixture of the elemental powder. The transformation temperature range from amorphous phase to the quasicrystalline phase was from 400 K to 900 K. The mechanical properties of the bulk quasicrystalline alloy have been examined at room temperature. The Vickers hardness and compressive fracture strength were 620 +/- 40 and 1030 +/- 60 MPa, respectively. The bulk quasicrystalline alloy exhibited the elastic deformation by the compressive test. The fracture mode was brittle cleavage fracture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For improving the electrode characteristics of the Zr-based AB(2)-type alloy, a new kind of composite hydrogen Zr0.9Ti0.1(Ni0.50Mn0.35V0.15)(2)(represented as AB(2)) with a rare storage alloy was successfully prepared by ball-milling I earth-based AB(5)-type alloy (represented as AB(5)) which worked as a surface modifier. Effects of ball-milling on the electrode characteristics and microstructure of Zr0.9Ti0.1(Ni0.50Mn0.35V0.15)(2) alloy and mixtures of AB(2) with AB(5) alloy were investigated. After milling the mixed AB(2) and AB(5) powders (9: 1 in mass ratio) for 10min, XRD and SEM analysis showed that AB(2) and AB(5) maintained their original crystalline states, respectively, some AB(5) particles were adhered onto the surface of AB(2), and some fresh surfaces were formed. It was found that the activation cycles of AB(2)-AB(5) composite alloy was shortened from 14 to 7 and the maximum discharge capacity was increased from 330mAh . g(-1) to 347mAh . g(-1) as compared with AB(2) alloy. The discharge rate capability of AB(2) alloy was also improved by ball milling AB(2) with AB(5) alloy process. The combined effect of ball-milling and mixing with AB(5) alloy is superior to that of sole treatment. It was believed that AB(5) alloy works not only as a regular hydrogen storage alloy, but also as a surface modifier to catalyze the hydriding/ dehydriding process of AB(2) alloy.