998 resultados para QUANTUM RINGS
Resumo:
Several of the most interesting quantum effects can or could be observed in nanoscopic systems. For example, the effect of strong correlations between electrons and of quantum interference can be measured in transport experiments through quantum dots, wires, individual molecules and rings formed by large molecules or arrays of quantum dots. In addition, quantum coherence and entanglement can be clearly observed in quantum corrals. In this paper we present calculations of transport properties through Aharonov-Bohm strongly correlated rings where the characteristic phenomenon of charge-spin separation is clearly observed. Additionally quantum interference effects show up in transport through pi-conjugated annulene molecules producing important effects on the conductance for different source-drain configurations, leading to the possibility of an interesting switching effect. Finally, elliptic quantum corrals offer an ideal system to study quantum entanglement due to their focalizing properties. Because of an enhanced interaction between impurities localized at the foci, these systems also show interesting quantum dynamical behaviour and offer a challenging scenario for quantum information experiments.
Resumo:
We investigate theoretically quantum transport through graphene nanorings in the presence of a perpendicular magnetic field. Our theoretical results demonstrate that the graphene nanorings behave like a resonant tunneling device, contrary to the Aharonov-Bohm oscillations found in conventional semiconductor rings. The resonant tunneling can be tuned by the Fermi energy, the size of the central part of the graphene nanorings and the external magnetic field.
Resumo:
In the framework of effective mass envelope function theory, the electronic structures of GaAs/AlxGa1-xAs quantum double rings(QDRs) are studied. Our model can be used to calculate the electronic structures of quantum wells, wires, dots, and the single ring. In calculations, the effects due to the different effective masses of electrons and holes in GaAs and AlxGa1-xAs and the valence band mixing are considered. The energy levels of electrons and holes are calculated for different shapes of QDRs. The calculated results are useful in designing and fabricating the interrelated photoelectric devices. The single electron states presented here are useful for the study of the electron correlations and the effects of magnetic fields in QDRs.
Resumo:
Well-defined complex quantum ring structures formed by droplet epitaxy are demonstrated. By varying the temperature of the crystallizing Ga droplets and changing the As flux, GaAs/AlGaAs quantum single rings and concentric quantum double rings are fabricated, and double-ring complexes are observed. The growth mechanism of these quantum ring complexes is addressed. (c) 2006 American Institute of Physics.
Resumo:
The ballistic transport in the semiconductor, planar, circular quantum dot structures is studied theoretically. The transmission probabilities show apparent resonant tunneling peaks, which correspond to energies of bound states in the dot. By use of structures with different angles between the inject and exit channels, the resonant peaks can be identified very effectively. The perpendicular magnetic field has obvious effect on the energies of bound states in the quantum dot, and thus the resonant peaks. The treatment of the boundary conditions simplifies the problem to the solution of a set of linear algebraic equations. The theoretical results in this paper can be used to design planar resonant tunneling devices, whose resonant peaks are adjustable by the angle between the inject and exit channels and the applied magnetic field. The resonant tunneling in the circular dot structures can also be used to study the bound states in the absence and presence of magnetic field.
Resumo:
In the framework of effective-mass envelope function theory, the valence energy subbands and optical transitions of the InAs/GaAs quantum ring are calculated by using a four-band valence band model. Our model can be used to calculate the hole states of quantum wells, quantum wires, and quantum dots. The effect of finite offset and valence band mixing are taken into account. The energy levels of the hole are calculated in the different shapes of rings. Our calculations show that the effect of the difference between effective masses of holes in different materials on the valence subband structures is significant. Our theoretical results are consistent with the conclusion of the recent experimental measurements and should be useful for researching and making low-dimensional semiconductor optoelectronic devices. (C) 2002 American Institute of Physics.
Resumo:
A one-dimensional quantum waveguide theory for mesoscopic structures is proposed, and the boundary conditions of the wave functions at an intersection are given. The Aharonov-Bohm effect is quantitatively discussed with use of this theory, and the reflection, transmission amplitudes, etc., are given as functions of the magnetic flux, the arm lengths, and the wave vector. It is found that the oscillating current consists of a significant component of the second harmonic. This theory is also applied to investigate quantum-interference devices. The results on the Aharonov-Bohm effect and the quantum-interference devices are found to be in agreement with previous theoretical results.
Resumo:
Quantum interference properties of GaAs/AlGaAs symmetric double quantum wells were investigated in a magnetic field parallel to heterointerfaces at 1.9 K. For two types of samples used in our experiments, two GaAs quantum wells with the same width of 60 Angstrom are separated by an AlGaAs barrier layer of 120 Angstrom and 20 degrees thick, respectively. The channels with the length of 2 mu m are defined by alloyed ohmic contacts. The conductance oscillation as a function of the magnetic flux Phi(= B/s) was observed and oscillation period is approximately equal to h/e. The results are in agreement with the theoretical expectation of the Aharonov-Bohm effect. Conductance oscillations are apparent slightly in the samples with a thinner AlGaAs barrier.
Resumo:
The effects of an in-plane electric field and eccentricity on the electronic spectrum of a GaAs quantum ring in a perpendicular magnetic field are studied. The effective-mass equation is solved by two different methods: an adiabatic approximation and a diagonalization procedure after a conformal mapping. It is shown that the electric field and the eccentricity may suppress the Aharonov-Bohm oscillations of the lower energy levels. Simple expressions for the threshold energy and the number of flat energy bands are found. In the case of a thin and eccentric ring, the intensity of a critical field which compensates the main effects of eccentricity is determined. The energy spectra are found in qualitative agreement with previous experimental and theoretical works on anisotropic rings.
Resumo:
We present a mechanism for persistent charge current. Quantum spin Hall insulators hold dissipationless spin currents in their edges so that, for a given spin orientation, a net charge current flows which is exactly compensated by the counterflow of the opposite spin. Here we show that ferromagnetic order in the edge upgrades the spin currents into persistent charge currents without applied fields. For that matter, we study the Hubbard model including Haldane-Kane-Mele spin-orbit coupling in a zigzag ribbon and consider the case of graphene. We find three electronic phases with magnetic edges that carry currents reaching 0.4 nA, comparable to persistent currents in metallic rings, for the small spin-orbit coupling in graphene. One of the phases is a valley half metal.
Resumo:
Entanglement is defined for each vector subspace of the tensor product of two finite-dimensional Hilbert spaces, by applying the notion of operator entanglement to the projection operator onto that subspace. The operator Schmidt decomposition of the projection operator defines a string of Schmidt coefficients for each subspace, and this string is assumed to characterize its entanglement, so that a first subspace is more entangled than a second, if the Schmidt string of the second majorizes the Schmidt string of the first. The idea is applied to the antisymmetric and symmetric tensor products of a finite-dimensional Hilbert space with itself, and also to the tensor product of an angular momentum j with a spin 1/2. When adapted to the subspaces of states of the nonrelativistic hydrogen atom with definite total angular momentum (orbital plus spin), within the space of bound states with a given total energy, this leads to a complete ordering of those subspaces by their Schmidt strings.
Resumo:
A quantum random walk on the integers exhibits pseudo memory effects, in that its probability distribution after N steps is determined by reshuffling the first N distributions that arise in a classical random walk with the same initial distribution. In a classical walk, entropy increase can be regarded as a consequence of the majorization ordering of successive distributions. The Lorenz curves of successive distributions for a symmetric quantum walk reveal no majorization ordering in general. Nevertheless, entropy can increase, and computer experiments show that it does so on average. Varying the stages at which the quantum coin system is traced out leads to new quantum walks, including a symmetric walk for which majorization ordering is valid but the spreading rate exceeds that of the usual symmetric quantum walk.
Resumo:
2000 Mathematics Subject Classification: Primary 81R50, 16W50, 16S36, 16S37.
Resumo:
Quantum key distribution (QKD) promises secure key agreement by using quantum mechanical systems. We argue that QKD will be an important part of future cryptographic infrastructures. It can provide long-term confidentiality for encrypted information without reliance on computational assumptions. Although QKD still requires authentication to prevent man-in-the-middle attacks, it can make use of either information-theoretically secure symmetric key authentication or computationally secure public key authentication: even when using public key authentication, we argue that QKD still offers stronger security than classical key agreement.