630 resultados para QUADRUPOLE MAGNETS
Resumo:
We have experimentally studied the parametric excitation of Rb-87 atoms in a quadrupole-Ioffe-configuration trap. The temperature of an atomic cloud and number of trapped atoms versus time and modulation frequency of the parametric excitation field have been measured. We also noticed that the contribution of atomic collisions to the energy distributions can not be ignored in the case of weak excitation, which results in a lower temperature of the atomic cloud than by Gehm [Phys. Rev. A 58, 3914 (1998)] predicted.
Resumo:
Previous studies indicate that elasmobranch fishes (sharks, skates and rays) detect the Earth’s geomagnetic field by indirect magnetoreception through electromagnetic induction, using their ampullae of Lorenzini. Applying this concept, we evaluated the capture of elasmobranchs in the presence of permanent magnets in hook-and-line and inshore longline fishing experiments. Hooks with neodymium-iron-boron magnets significantly reduced the capture of elasmobranchs overall in comparison with control and procedural control hooks in the hook-and-line experiment. Catches of Atlantic sharpnose shark (Rhizoprionodon terraenovae) and smooth dogfish (Mustelus canis) were signif icantly reduced with magnetic hook-and-line treatments, whereas catches of spiny dogfish (Squalus acanthias) and clearnose skate (Raja eglanteria) were not. Longline hooks with barium-ferrite magnets significantly reduced total elasmobranch capture when compared with control hooks. In the longline study, capture of blacktip sharks (Carcharhinus limbatus) and southern stingrays (Dasyatis americana) was reduced on magnetic hooks, whereas capture of sandbar shark (Carcharhinus plumbeus) was not affected. Teleosts, such as red drum (Sciaenops ocellatus), Atlantic croaker (Micropogonias undulatus), oyster toadfish (Opsanus tau), black sea bass (Centropristis striata), and the bluefish (Pomatomas saltatrix), showed no hook preference in either hook-and-line or longline studies. These results indicate that permanent magnets, although eliciting species-specific capture trends, warrant further investigation in commercial longline and recreational fisheries, where bycatch mortality is a leading contributor to declines in elasmobranch populations.
Resumo:
Superconductors, such as YBCO bulks, have extremely high potential magnetic flux densities, comparing to rare earth magnets. Therefore, the magnetization of superconductors has attracted broad attention and contribution from both academic research and industry. In this paper, a novel technique is proposed to magnetize superconductors. Unusually, instead of using high magnetic fields and pulses, repeatedly magnetic waves with strength of as low as rare earth magnets are applied. These magnetic waves, generated by thermally controlling a Gadolinium (Gd) bulk with a rare earth magnet underneath, travel over the flat surface of a YBCO bulk and get trapped little by little. Thus, a very small magnetic field can be used to build up a very large magnetic field. In this paper, the modelling results of thermally actuated magnetic waves are presented showing how to transfer sequentially applied thermal pulses into magnetic waves. The experiment results of the magnetization of YBCO bulk are also presented to demonstrate how superconductors are progressively magnetized by small magnetic field © 2010 IOP Publishing Ltd.
Resumo:
A high energy heavy ion microbeam irradiation system is constructed at the Institute of Modern Physics (IMP) of the Chinese Academy of Sciences (CAS). A quadrupole focusing system, in combination with a series of slits, has been designed here. The IMP microbeam system is described in detail. The intrinsic and parasitic aberrations associated with the magnets are simulated. The ion beam optics of this microbeam system is investigated systematically. Then the optimized initial beam parameters are given for high spatial resolution and high hitting rates.
Resumo:
Two high magnetic field hexapoles for electron cyclotron resonance ion source (ECRIS) have successfully fabricated to provide sufficient radial magnetic confinement to the ECR plasma. The highest magnetic field at the inner pole tip of one of the magnets exceeds 1.5 T, with the inner diameter (i.d.)=74 mm. The other hexapole magnet provides more than 1.35 T magnetic field at the inner pole tip, and the i.d. is 84 mm. In this article, we discuss the necessity to have a good radial magnetic field confinement and the importance of a Halbach hexapole to a high performance ECRIS. The way to design a high magnetic field Halbach structure hexapole and one possible solution to the self-demagnetization problem are both discussed. Based on the above discussions, two high magnetic field hexapoles have been fabricated to be utilized on two high performance ECRISs in Lanzhou. The preliminary results obtained from the two ECR ion sources are given