995 resultados para Q-factor


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently introduced Surface Nanoscale Axial Photonics (SNAP) is based on whispering gallery modes circulating around the optical FIber surface and undergoing slow axial propagation. In this paper we develop the theory of propagation of whispering gallery modes in a SNAP microresonator, which is formed by nanoscale asymmetric perturbation of the FIber translation symmetry and called here a nanobump microresonator. The considered modes are localized near a closed stable geodesic situated at the FIber surface. A simple condition for the stability of this geodesic corresponding to the appearance of a high Q-factor nanobump microresonator is found. The results obtained are important for engineering of SNAP devices and structures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Digital back-propagation (DBP) has recently been proposed for the comprehensive compensation of channel nonlinearities in optical communication systems. While DBP is attractive for its flexibility and performance, it poses significant challenges in terms of computational complexity. Alternatively, phase conjugation or spectral inversion has previously been employed to mitigate nonlinear fibre impairments. Though spectral inversion is relatively straightforward to implement in optical or electrical domain, it requires precise positioning and symmetrised link power profile in order to avail the full benefit. In this paper, we directly compare ideal and low-precision single-channel DBP with single-channel spectral-inversion both with and without symmetry correction via dispersive chirping. We demonstrate that for all the dispersion maps studied, spectral inversion approaches the performance of ideal DBP with 40 steps per span and exceeds the performance of electronic dispersion compensation by ~3.5 dB in Q-factor, enabling up to 96% reduction in complexity in terms of required DBP stages, relative to low precision one step per span based DBP. For maps where quasi-phase matching is a significant issue, spectral inversion significantly outperforms ideal DBP by ~3 dB.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The impact of hybrid erbium-doped fiber amplifier (EDFA)/Raman amplification on a spectrally efficient coherent-wavelength-division-multiplexed (CoWDM) optical communication system is experimentally studied and modeled. Simulations suggested that 23-dB Raman gain over an unrepeatered span of 124 km single-mode fiber would allow a decrease of the mean input power of ~6 dB for a fixed bit-error rate (BER). Experimentally we demonstrated 1.2-dB Q-factor improvement for a 2-Tb/s seven-band CoWDM with backward Raman amplification. The system delivered an optical signal-to-noise ratio of 35 dB at the output of the receiver preamplifier providing a worst-case BER of 2 × 10 -6 over 49 subcarriers at 42.8 Gbaud, leaving a system margin (in terms of Q -factor) of ~4 dB from the forward-error correction threshold.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report that, contrary to common perception, intra-channel nonlinearity compensation offers significant improvements of up to 4dB, in nonlinear tolerance (Q-factor), in a flexible traffic scenario, and further improvements with increasing local link dispersion, for an optical transport network employing flexible 28Gbaud PM-mQAM transponders.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study analyzes the validity of different Q-factor models in the BER estimation in RZ-DPSK transmission at 40 Gb/s channel rate. The impact of the duty cycle of the carrier pulses on the accuracy of the BER estimates through the different models has also been studied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report for the first time on the limitations in the operational power range of few-mode fiber based transmission systems, employing 28Gbaud quadrature phase shift keying transponders, over 1,600km. It is demonstrated that if an additional mode is used on a preexisting few-mode transmission link, and allowed to optimize its performance, it will have a significant impact on the pre-existing mode. In particular, we show that for low mode coupling strengths (weak coupling regime), the newly added variable power mode does not considerably impact the fixed power existing mode, with performance penalties less than 2dB (in Q-factor). On the other hand, as mode coupling strength is increased (strong coupling regime), the individual launch power optimization significantly degrades the system performance, with penalties up to ∼6dB. Our results further suggest that mutual power optimization, of both fixed power and variable power modes, reduces power allocation related penalties to less than 3dB, for any given coupling strength, for both high and low differential mode delays. © 2013 Optical Society of America.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We develop a method for fabricating very small silica microbubbles having a micrometer-order wall thickness and demonstrate the first optical microbubble resonator. Our method is based on blowing a microbubble using stable radiative CO2 laser heating rather than unstable convective heating in a flame or furnace. Microbubbles are created along a microcapillary and are naturally opened to the input and output microfluidic or gas channels. The demonstrated microbubble resonator has 370 µm diameter, 2 µm wall thickness, and a Q factor exceeding 10. © 2010 Optical Society of America.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The basic functional element of microfiber photonics is a microfiber coil resonator (MCR), which potentially can perform filtering, time delay, and nonlinear transformations of electromagnetic waves, as well as sensing of the ambient medium. The first experimental demonstration of an MCR has been recently performed by researchers of the OFS Laboratories (Optical Fiber Communication Conference 2007, Postdeadline paper PDP46). This paper follows up on the later publication presenting a brief introduction to the theory, transmission properties and applications of optical micro/nanofibers and MCRs. Fabrication of MCRs in air and in liquid is reported. For the MCR immersed in liquid, the Q-factor exceeding 60 000 is achieved. © 2008 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We develop a method for fabricating very small silica microbubbles having a micrometer-order wall thickness and demonstrate the first optical microbubble resonator. Our method is based on blowing a microbubble using stable radiative CO2 laser heating rather than unstable convective heating in a flame or furnace. Microbubbles are created along a microcapillary and are naturally opened to the input and output microfluidic or gas channels. The demonstrated microbubble resonator has 370 µm diameter, 2 µm wall thickness, and a Q factor exceeding 10. © 2010 Optical Society of America.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The basic functional element of microfiber photonics is a microfiber coil resonator (MCR), which potentially can perform filtering, time delay, and nonlinear transformations of electromagnetic waves, as well as sensing of the ambient medium. The first experimental demonstration of an MCR has been recently performed by researchers of the OFS Laboratories (Optical Fiber Communication Conference 2007, Postdeadline paper PDP46). This paper follows up on the later publication presenting a brief introduction to the theory, transmission properties and applications of optical micro/nanofibers and MCRs. Fabrication of MCRs in air and in liquid is reported. For the MCR immersed in liquid, the Q-factor exceeding 60 000 is achieved. © 2008 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study analyzes the validity of different Q-factor models in the BER estimation in RZ-DPSK transmission at 40 Gb/s channel rate. The impact of the duty cycle of the carrier pulses on the accuracy of the BER estimates through the different models has also been studied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The feasibility of stable soliton transmission system was demonstrated using a practical dispersion map in conjunction with in-line nonlinear optical loop mirrors (NOLMs). The system's performance was examined at 40 Gbit/s data rate in terms of maximum propagation distance corresponding to a bit error rate of more than 10-9. The bit error rate was estimated by means of the standard Q-factor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We quantify the benefits of intra-channel nonlinear compensation in meshed optical networks, in view of network configuration, fibre design aspect, and dispersion management. We report that for a WDM optical transport network employing flexible 28Gbaud PM-mQAM transponders with no in-line dispersion compensation, intrachannel nonlinear compensation, for PM-16QAM through traffic, offers significant improvements of up to 4dB in nonlinear tolerance (Q-factor) irrespective of the co-propagating modulation format, and that this benefit is further enhanced (1.5dB) by increasing local link dispersion. For dispersion managed links, we further report that advantages of intra-channel nonlinear compensation increase with in-line dispersion compensation ratio, with 1.5dB improvements after 95% in-line dispersion compensation, compared to uncompensated transmission. © 2012 Optical Society of America.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we propose to increase residual carrier frequency offset tolerance based on short perfect reconstruction pulse shaping for coherent optical-orthogonal frequency division multiplexing. The proposed method suppresses the residual carrier frequency offset induced penalty at the receiver, without requiring any additional overhead and exhaustive signal processing. The Q-factor improvement contributed by the proposed method is 1.6 dB and 1.8 dB for time-frequency localization maximization and out-of-band energy minimization pulse shapes, respectively. Finally, the transmission span gain under the influence of residual carrier frequency offset is ̃62% with out-of-band energy minimization pulse shape. © 2014 Optical Society of America.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report that, contrary to common perception, intra-channel nonlinearity compensation offers significant improvements of up to 4dB, in nonlinear tolerance (Q-factor), in a flexible traffic scenario, and further improvements with increasing local link dispersion, for an optical transport network employing flexible 28Gbaud PM-mQAM transponders.