980 resultados para Q(2)-DEPENDENCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In recent years, new precision experiments have become possible withthe high luminosity accelerator facilities at MAMIand JLab, supplyingphysicists with precision data sets for different hadronic reactions inthe intermediate energy region, such as pion photo- andelectroproduction and real and virtual Compton scattering.By means of the low energy theorem (LET), the global properties of thenucleon (its mass, charge, and magnetic moment) can be separated fromthe effects of the internal structure of the nucleon, which areeffectively described by polarizabilities. Thepolarizabilities quantify the deformation of the charge andmagnetization densities inside the nucleon in an applied quasistaticelectromagnetic field. The present work is dedicated to develop atool for theextraction of the polarizabilities from these precise Compton data withminimum model dependence, making use of the detailed knowledge of pionphotoproduction by means of dispersion relations (DR). Due to thepresence of t-channel poles, the dispersion integrals for two ofthe six Compton amplitudes diverge. Therefore, we have suggested to subtract the s-channel dispersion integrals at zero photon energy($nu=0$). The subtraction functions at $nu=0$ are calculated through DRin the momentum transfer t at fixed $nu=0$, subtracted at t=0. For this calculation, we use the information about the t-channel process, $gammagammatopipito Nbar{N}$. In this way, four of thepolarizabilities can be predicted using the unsubtracted DR in the $s$-channel. The other two, $alpha-beta$ and $gamma_pi$, are free parameters in ourformalism and can be obtained from a fit to the Compton data.We present the results for unpolarized and polarized RCS observables,%in the kinematics of the most recent experiments, and indicate anenhanced sensitivity to the nucleon polarizabilities in theenergy range between pion production threshold and the $Delta(1232)$-resonance.newlineindentFurthermore,we extend the DR formalism to virtual Compton scattering (radiativeelectron scattering off the nucleon), in which the concept of thepolarizabilities is generalized to the case of avirtual initial photon by introducing six generalizedpolarizabilities (GPs). Our formalism provides predictions for the fourspin GPs, while the two scalar GPs $alpha(Q^2)$ and $beta(Q^2)$ have to befitted to the experimental data at each value of $Q^2$.We show that at energies betweenpion threshold and the $Delta(1232)$-resonance position, thesensitivity to the GPs can be increased significantly, as compared tolow energies, where the LEX is applicable. Our DR formalism can be used for analysing VCS experiments over a widerange of energy and virtuality $Q^2$, which allows one to extract theGPs from VCS data in different kinematics with a minimum of model dependence.
Resumo:
Ziel dieser Arbeit war die Pr"{a}paration, Charakterisierung und Untersuchung der elektronischen Eigenschaften von d"{u}nnen Schichten des Hochtemperatursupraleiters HgReBa$_{2}$Ca$_{n-1}$Cu$_{n}$O$_{y}$, die mittels gepulster Laser-Deposition hergestellt wurden. Die HgRe1212-Filme zeigen in der AC-Suszeptibilit"{a}t einen scharfen "{U}bergang in die supraleitende Phase bei 124 K mit einer "{U}bergangsbreite von 2 K. Die resistiven "{U}berg"{a}nge der Proben wurden mit zunehmender St"{a}rke des externen Magnetfeldes breiter. Aus der Steigung der Arrheniusplots konnte die Aktivierungsenergie f"{u}r verschiedene Feldst"{a}rken bestimmt werden. Weiterhin wurde die Winkelabh"{a}ngigkeit des Depinning-Feldes $B_{dp}(theta)$ der Filme gemessen. Hieraus wurde ein Anisotropiewert von $gamma$ = 7.7 bei 105 K ermittelt. Dies ist relevant, um den f"{u}r Anwendungen wichtigen Bereich im $T$-$B$-$theta$-Phasenraum des Materials absch"{a}tzen zu k"{o}nnen. Die kritische Stromdichte $J_{c}$ der d"{u}nnen Filme aus HgRe-1212 wurde mit Hilfe eines SQUID-Magnetometers gemessen. Die entsprechenden $M$-$H$ Kurven bzw. das magnetische Moment dieser Filme wurde f"{u}r einen weiten Temperatur- und Feldbereich mit einem magnetischen Feld senkrecht zum Film aufgenommen. F"{u}r einen HgRe-1212-Film konnte bei 5 K eine kritische Stromdichte von 1.2 x 10$^{7}$ A/cm$^{2}$ und etwa 2 x 10$^{6}$ A/cm$^{2}$ bei 77 K ermittelt werden. Es wurde die Magnetfeld- und die Temperaturabh"{a}ngigkeit des Hall-Effekts im normalleitenden und im Mischzustand in Magnetfeldern senkrecht zur $ab$-Ebene bis zu 12 T gemessen. Oberhalb der kritischen Temperatur $T_{c}$ steigt der longitudinale spezifische Widerstand $rho_{xx}$ linear mit der Temperatur, w"{a}hrend der spezifische Hall-Widerstand $rho_{yx}$ sich umgekehrt proportional zur Temperatur "{a}ndert. In der N"{a}he von $T_{c}$ und in Feldern kleiner als 3 T wurde eine doppelte Vorzeichen"{a}nderung des spezifischen Hall-Widerstandes beobachtet. Der Hall-Winkel im Normalzustand, cot $theta_{H}= alpha T^{2} + beta$, folgt einer universellen $textit{T }^{2}$-Abh"{a}ngigkeit in allen magnetischen Feldern. In der N"{a}he des Nullwiderstand-Zustandes h"{a}ngt der spezifische Hall-Widerstand $rho_{yx}$ "{u}ber ein Potenzgesetz mit dem longitudinalen Widerstand $rho_{xx}$ zusammen. Das Skalenverhalten zwischen $rho_{yx}$ und $rho_{xx}$ weist eine starke Feld-Abh"{a}ngigkeit auf. Der Skalenexponent $beta$ in der Gleichung $rho_{yx}$ =A $rho_{xx}^{beta}$ steigt von 1.0 bis 1.7, w"{a}hrend das Feld von 1.0 bis 12 T zunimmt.
Resumo:
The ECHo Collaboration (Electron Capture 163Ho aims to investigate the calorimetric spectrum following the electron capture decay of 163Ho to determine the mass of the electron neutrino. The size of the neutrino mass is reflected in the endpoint region of the spectrum, i.e., the last few eV below the transition energy. To check for systematic uncertainties, an independent determination of this transition energy, the Q-value, is mandatory. Using the TRIGA-TRAP setup, we demonstrate the feasibility of performing this measurement by Penning-trap mass spectrometry. With the currently available, purified 163Ho sample and an improved laser ablation mini-RFQ ion source, we were able to perform direct mass measurements of 163Ho and 163Dy with a sample size of less than 1017 atoms. The measurements were carried out by determining the ratio of the cyclotron frequencies of the two isotopes to those of carbon cluster ions using the time-of-flight ion cyclotron resonance method. The obtained mass excess values are ME(163Ho)= −66379.3(9) keV and ME(163Dy)= −66381.7(8) keV. In addition, the Q-value was measured for the first time by Penning-trap mass spectrometry to be Q = 2.5(7) keV.
Resumo:
In 1969, Denniston gave a construction of maximal arcs of degree n in Desarguesian projective planes of even order q, for all n dividing q. Recently, Mathon gave a construction method that generalized that of Denniston. In this paper we use that method to give maximal arcs that are not of Dermiston type for all n dividing q, 4 < n < q/2, q even. It is then shown that there are a large number of isomorphism classes of such maximal arcs when n is approximately rootq. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
We propose a family of attributed graph kernels based on mutual information measures, i.e., the Jensen-Tsallis (JT) q-differences (for q ∈ [1,2]) between probability distributions over the graphs. To this end, we first assign a probability to each vertex of the graph through a continuous-time quantum walk (CTQW). We then adopt the tree-index approach [1] to strengthen the original vertex labels, and we show how the CTQW can induce a probability distribution over these strengthened labels. We show that our JT kernel (for q = 1) overcomes the shortcoming of discarding non-isomorphic substructures arising in the R-convolution kernels. Moreover, we prove that the proposed JT kernels generalize the Jensen-Shannon graph kernel [2] (for q = 1) and the classical subtree kernel [3] (for q = 2), respectively. Experimental evaluations demonstrate the effectiveness and efficiency of the JT kernels.
Resumo:
2000 Mathematics Subject Classification: Primary 17A32, Secondary 17D25.
Resumo:
The single spin asymmetry, ALT ′, and the polarized structure function, σ LT′, for the p( e&ar; , e′K +)Λ reaction in the resonance region have been measured and extracted using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. Data were taken at an electron beam energy of 2.567 GeV. The large acceptance of CLAS allows for full azimuthal angle coverage over a large range of center-of-mass scattering angles. Results were obtained that span a range in Q 2 from 0.5 to 1.3 GeV2 and W from threshold up to 2.1 GeV and were compared to existing theoretical calculations. The polarized structure function is sensitive to the interferences between various resonant amplitudes, as well as to resonant and non-resonant amplitudes. This measurement is essential for understanding the structure of nucleons and searching for previously undetected nucleon excited states (resonances) predicted by quark models. The W dependence of the σ LT′ in the kinematic regions dominated by s and u channel exchange (cos qcmk = −0.50, −0.167, 0.167) indicated possible resonance structures not predicted by theoretical calculations. The σLT ′ behavior around W = 1.875 GeV could be the signature of a resonance predicted by the quark models and possibly seen in photoproduction. In the very forward angles where the reaction is dominated by the t-channel, the average σLT ′ was zero. There was no indication of the interference between resonances or resonant and non-resonant amplitudes. This might be indicating the dominance of a single t-channel exchange. Study of the sensitivity of the fifth structure function data to the resonance around 1900 MeV showed that these data were highly sensitive to the various assumptions of the models for the quantum number of this resonance. This project was part of a larger CLAS program to measure cross sections and polarization observables for kaon electroproduction in the nucleon resonance region. ^
Resumo:
The two-photon exchange phenomenon is believed to be responsible for the discrepancy observed between the ratio of proton electric and magnetic form factors, measured by the Rosenbluth and polarization transfer methods. This disagreement is about a factor of three at Q 2 of 5.6 GeV2. The precise knowledge of the proton form factors is of critical importance in understanding the structure of this nucleon. The theoretical models that estimate the size of the two-photon exchange (TPE) radiative correction are poorly constrained. This factor was found to be directly measurable by taking the ratio of the electron-proton and positron-proton elastic scattering cross sections, as the TPE effect changes sign with respect to the charge of the incident particle. A test run of a modified beamline has been conducted with the CEBAF Large Acceptance Spectrometer (CLAS) at Thomas Jefferson National Accelerator Facility. This test run demonstrated the feasibility of producing a mixed electron/positron beam of good quality. Extensive simulations performed prior to the run were used to reduce the background rate that limits the production luminosity. A 3.3 GeV primary electron beam was used that resulted in an average secondary lepton beam of 1 GeV. As a result, the elastic scattering data of both lepton types were obtained at scattering angles up to 40 degrees for Q2 up to 1.5 GeV2. The cross section ratio displayed an &epsis; dependence that was Q2 dependent at smaller Q2 limits. The magnitude of the average ratio as a function of &epsis; was consistent with the previous measurements, and the elastic (Blunden) model to within the experimental uncertainties. Ultimately, higher luminosity is needed to extend the data range to lower &epsis; where the TPE effect is predicted to be largest.
Resumo:
The electromagnetic form factors are the most fundamental observables that encode information about the internal structure of the nucleon. The electric (GE) and the magnetic ( GM) form factors contain information about the spatial distribution of the charge and magnetization inside the nucleon. A significant discrepancy exists between the Rosenbluth and the polarization transfer measurements of the electromagnetic form factors of the proton. One possible explanation for the discrepancy is the contributions of two-photon exchange (TPE) effects. Theoretical calculations estimating the magnitude of the TPE effect are highly model dependent, and limited experimental evidence for such effects exists. Experimentally, the TPE effect can be measured by comparing the ratio of positron-proton elastic scattering cross section to that of the electron-proton [R = σ(e +p)/σ(e+p)]. The ratio R was measured over a wide range of kinematics, utilizing a 5.6 GeV primary electron beam produced by the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab. This dissertation explored dependence of R on kinematic variables such as squared four-momentum transfer (Q2) and the virtual photon polarization parameter (&epsis;). A mixed electron-positron beam was produced from the primary electron beam in experimental Hall B. The mixed beam was scattered from a liquid hydrogen (LH2) target. Both the scattered lepton and the recoil proton were detected by the CEBAF Large Acceptance Spectrometer (CLAS). The elastic events were then identified by using elastic scattering kinematics. This work extracted the Q2 dependence of R at high &epsis;(&epsis; > 0.8) and the $&epsis; dependence of R at ⟨Q 2⟩ approx 0.85 GeV2. In these kinematics, our data confirm the validity of the hadronic calculations of the TPE effect by Blunden, Melnitchouk, and Tjon. This hadronic TPE effect, with additional corrections contributed by higher excitations of the intermediate state nucleon, largely reconciles the Rosenbluth and the polarization transfer measurements of the electromagnetic form factors.
Resumo:
We consider a (p, q)− equation (1 < q < p, p ≥ 2) with a parametric concave term and a (p − 1)− linear perturbation. We show that the problem have five nontrivial smooth solutions: four of constant sign and the fifth nodal. When q = 2 (i.e., (p, 2) equation) we show that the problem has six nontrivial smooth solutions, but we do not specify the sign of the sixth solution. Our approach uses variational methods, together with truncation and comparison techniques and Morse theory.
Resumo:
Purpose: The aim is to evaluate the level of inclination of the surgeon's spinal column (ISSC) while performing laparoscopic radical prostatectomy (LRP) when using one trocar on each side of the patient abdomen (""torero"" position) in two scenarios: With and without a thin head supporter adapted to the table. Materials and Methods: Based on trigonometric principles, we elaborated a formula to calculate the ISSC for a determined surgeon and surgical table while performing LRP in the torero position. The parameters considered were the width of the surgical table (m), the distance between the surgeon's anterior superior iliac spines (q), and the distance from the central point between the surgeon's anterior superior iliac spines to the surgeon's head (h). We used the formula alpha = 90 degree-cos(-1)(b/h) (where b = q/2 + m/2) in an Excel sheet to calculate the angle of inclination of the surgeon's spinal column. We applied the measures of 12 surgeons with different biotypes of our staff to calculate the ISSC with and without the thin head supporter. Results: The use of a thin head supporter reduced the mean ISCC in the torero position from 36.1 +/- 3.73 degrees (range 31.3 to 49.8 degrees) to 22.1 +/- 4.9 degrees (range 18.7 to 32.9 degrees), which corresponds to a reduction of 38.8% in the mean angle of inclination. This difference was statistically significant (P < 0.001). Conclusion: The use of a thin head supporter adapted to the surgical table objectively reduces lateral inclination of the surgeon's spinal column in the torero position, making LRP a more comfortable procedure.
Resumo:
Using a quasi-toroidal set of coordinates in plasmas with coaxial circular magnetic surfaces, the Vlasov equation is solved, and dielectric tensor is found for large aspect ratio tokamaks in a low frequency band. Taking into account the q-profile and drift effects, Alfven wave continuum deformation by geodesic effects is analyzed. It is shown that the Alfven continuum has a minimum defined by the ion thermal velocity at the rational magnetic surfaces q(s)=-M/N, where M and N are the poloidal and toroidal mode numbers, respectively, and the parallel wave number is zero. Low frequency global Alfven waves are found below the continuum minimum. In hot ion plasmas, the geodesic term changes sign, provoking some deformation of Alfven velocity by a factor (1+q(2))(-1/2), and the continuum minimum disappears. (C) 2008 American Institute of Physics.
Resumo:
We propose a model for D(+)->pi(+)pi(-)pi(+) decays following experimental results which indicate that the two-pion interaction in the S wave is dominated by the scalar resonances f(0)(600)/sigma and f(0)(980). The weak decay amplitude for D(+)-> R pi(+), where R is a resonance that subsequently decays into pi(+)pi(-), is constructed in a factorization approach. In the S wave, we implement the strong decay R ->pi(+)pi(-) by means of a scalar form factor. This provides a unitary description of the pion-pion interaction in the entire kinematically allowed mass range m(pi pi)(2) from threshold to about 3 GeV(2). In order to reproduce the experimental Dalitz plot for D(+)->pi(+)pi(-)pi(+), we include contributions beyond the S wave. For the P wave, dominated by the rho(770)(0), we use a Breit-Wigner description. Higher waves are accounted for by using the usual isobar prescription for the f(2)(1270) and rho(1450)(0). The major achievement is a good reproduction of the experimental m(pi pi)(2) distribution, and of the partial as well as the total D(+)->pi(+)pi(-)pi(+) branching ratios. Our values are generally smaller than the experimental ones. We discuss this shortcoming and, as a by-product, we predict a value for the poorly known D ->sigma transition form factor at q(2)=m pi(2).
Resumo:
We construct and analyze a microscopic model for insulating rocksalt ordered double perovskites, with the chemical formula A(2)BB'O(6), where the B' atom has a 4d(1) or 5d(1) electronic configuration and forms a face-centered-cubic lattice. The combination of the triply degenerate t(2g) orbital and strong spin-orbit coupling forms local quadruplets with an effective spin moment j=3/2. Moreover, due to strongly orbital-dependent exchange, the effective spins have substantial biquadratic and bicubic interactions (fourth and sixth order in the spins, respectively). This leads, at the mean-field level, to three main phases: an unusual antiferromagnet with dominant octupolar order, a ferromagnetic phase with magnetization along the [110] direction, and a nonmagnetic but quadrupolar ordered phase, which is stabilized by thermal fluctuations and intermediate temperatures. All these phases have a two-sublattice structure described by the ordering wave vector Q=2 pi(001). We consider quantum fluctuations and argue that in the regime of dominant antiferromagnetic exchange, a nonmagnetic valence-bond solid or quantum-spin-liquid state may be favored instead. Candidate quantum-spin-liquid states and their basic properties are described. We also address the effect of single-site anisotropy driven by lattice distortions. Existing and possible future experiments are discussed in light of these results.