55 resultados para Pulverization
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The objective of the present study was to analyze the influence of spray mixture volume and flight height on herbicide deposition in aerial applications on pastures. The experimental plots were arranged in a pasture area in the district of Porto Esperidião (Mato Grosso, Brazil). In all of the treatments, the applications contained the herbicides aminopyralid and fluroxypyr (Dominum) at the dose of 2.5 L c.p. ha-1, including the adjuvant mineral oil (Joint Oil) at the dose of 1.0 L and a tracer to determine the deposition by high-performance liquid chromatography (HPLC) (rhodamine at a concentration of 0.6%). The experiment consisted of nine treatments that comprised the combinations of three spray volumes (20, 30 and 50 L ha-1) and three flight heights (10, 30 and 40 m). The results showed that, on average, there was a tendency for larger deposits for the smallest flight heights, with a significant difference between the heights of 10 and 40 m. There was no significant difference among the deposits obtained with the different spray mixture volumes.
Resumo:
The present work aimed to evaluate the volumetric distribution profiles, droplet spectra, surface tension, contact angle of droplet and the spraying liquid deposition over the peanut leaves (Arachis hypogaea L.), under artificial rain, in comparison with deposition without rain, using two hydraulic nozzle models of plain fan and insecticide spraying liquids with and without adjuvants addition. It were used a patternator for volumetric distribution analysis, a laser particles analyzer to evaluate droplet spectra produced by SF 110015 and XR 110015 nozzles and tensiometer for droplet tension and contact angle. The spraying liquids evaluated were: water, lambda-cialotrina, lambda-cialotrina + nitrogen fertilizer and lambda-cialotrina + mineral oil. All experiments followed a completely randomized design. Data were submitted to variance analysis by F test and the means comparisons by Scott-Knott test at 5% of probability. According to the results, it must be considered the maximum spacing in spray boom usage of 50 and 90 cm between the nozzles SF110015 and XR110015, respectively. The adjuvants effects on droplet spectra have shown addicted to the nozzle and the product used, and the adjuvants addition to the spraying liquid affected the potential risk of drift; The Volumetric Median Diameter (VMD) of produced droplets by nozzles filled into thin class and were not influenced by the adjuvants. The nitrogen fertilizer adjuvant may be indicated to promote improvements on coverage and droplet deposition on target.
Resumo:
This article considers some potential of activities developed in non-formal education in astronomy, like astronomical observatories and other related establishments. This kind of research is less explored in our country. We present, in this text, a model to study possible relations among these kinds of communities: the scientific, the amateur and the professional, applicable in astronomical observatories, in a motion against the local and punctual activities dispersion and pulverization of these establishments, and against the use of common sense to develop their activities, aiming the advancement of the astronomy education and its national research.
Resumo:
Pós-graduação em Agronomia (Horticultura) - FCA
Resumo:
Pós-graduação em Agronomia (Horticultura) - FCA
Resumo:
The demands for energy is leading to social and political conflicts in the world. For example, the limited resources of fossil fuels causing a dependence on the oil conveying countries in the world, leading to political discords. One way to save energy is to increase the efficiency of a process. In the field of thermoelectricity waste heat is used to produce electricity, this leads to an improvement of the efficiency. Heusler compounds with C1b structure with the general formula XY Z (X, Y = transition metal, Z = main group element) are in focus of the present thermoelectric research. Their mechanical and thermal stability is exceptional in comparison to the commonly used thermoelectric materials. The possibility to substitute small amounts of elements from the parent compound without destructing the lattice structure allows tuning the electronic properties. This tunability also allows to avoid the use of toxic and expensive elements. The reported thermoelectric Heusler compounds exhibit high electrical conductivity and moderate values of the Seebeck coefficients, which lead to a high powerfactor. The disadvantage of Heusler compounds is their high thermal conductivity. Introducing mass disorder on the X-site lattice is one effective way to produce additional phonon scattering and with it to decrease the thermal conductivity. Another approach is to implement a nano or micro structure in the thermoelectric material. This can be achieved by phase separation, composite materials, pulverization with additional spark plasma sintering or by a complex lattice structure. In the first part of this work, the influence of element substitutions on the Zr0.5Hf0.5NiSn system was investigated, to obtain the knowledge on how to optimize the electronic properties of the Heusler compounds with C1b structure. In line with this, the change of the electronic structure was investigated and a possible mechanism is predicted. In the second part of this work, the phenomenon of phase separation was investigated. First, by applying a phase separation in the well-known system Co2MnSn and subsequently by systematic investiga- tions on the TixZryHfzNiSn. In the third part, the results from the previous parts before were used to produce and explain the best reported Heusler compound with C1b structure exhibiting a Figure of Merit of ZT= 1.2 at 830 K.