952 resultados para Protein-Structure


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Site-directed mutagenesis and combinatorial libraries are powerful tools for providing information about the relationship between protein sequence and structure. Here we report two extensions that expand the utility of combinatorial mutagenesis for the quantitative assessment of hypotheses about the determinants of protein structure. First, we show that resin-splitting technology, which allows the construction of arbitrarily complex libraries of degenerate oligonucleotides, can be used to construct more complex protein libraries for hypothesis testing than can be constructed from oligonucleotides limited to degenerate codons. Second, using eglin c as a model protein, we show that regression analysis of activity scores from library data can be used to assess the relative contributions to the specific activity of the amino acids that were varied in the library. The regression parameters derived from the analysis of a 455-member sample from a library wherein four solvent-exposed sites in an α-helix can contain any of nine different amino acids are highly correlated (P < 0.0001, R2 = 0.97) to the relative helix propensities for those amino acids, as estimated by a variety of biophysical and computational techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The function of a protein generally is determined by its three-dimensional (3D) structure. Thus, it would be useful to know the 3D structure of the thousands of protein sequences that are emerging from the many genome projects. To this end, fold assignment, comparative protein structure modeling, and model evaluation were automated completely. As an illustration, the method was applied to the proteins in the Saccharomyces cerevisiae (baker’s yeast) genome. It resulted in all-atom 3D models for substantial segments of 1,071 (17%) of the yeast proteins, only 40 of which have had their 3D structure determined experimentally. Of the 1,071 modeled yeast proteins, 236 were related clearly to a protein of known structure for the first time; 41 of these previously have not been characterized at all.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we estimate the statistical significance of structure prediction by threading. We introduce a single parameter ɛ that serves as a universal measure determining the probability that the best alignment is indeed a native-like analog. Parameter ɛ takes into account both length and composition of the query sequence and the number of decoys in threading simulation. It can be computed directly from the query sequence and potential of interactions, eliminating the need for sequence reshuffling and realignment. Although our theoretical analysis is general, here we compare its predictions with the results of gapless threading. Finally we estimate the number of decoys from which the native structure can be found by existing potentials of interactions. We discuss how this analysis can be extended to determine the optimal gap penalties for any sequence-structure alignment (threading) method, thus optimizing it to maximum possible performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The database reported here is derived using the Combinatorial Extension (CE) algorithm which compares pairs of protein polypeptide chains and provides a list of structurally similar proteins along with their structure alignments. Using CE, structure–structure alignments can provide insights into biological function. When a protein of known function is shown to be structurally similar to a protein of unknown function, a relationship might be inferred; a relationship not necessarily detectable from sequence comparison alone. Establishing structure–structure relationships in this way is of great importance as we enter an era of structural genomics where there is a likelihood of an increasing number of structures with unknown functions being determined. Thus the CE database is an example of a useful tool in the annotation of protein structures of unknown function. Comparisons can be performed on the complete PDB or on a structurally representative subset of proteins. The source protein(s) can be from the PDB (updated monthly) or uploaded by the user. CE provides sequence alignments resulting from structural alignments and Cartesian coordinates for the aligned structures, which may be analyzed using the supplied Compare3D Java applet, or downloaded for further local analysis. Searches can be run from the CE web site, http://cl.sdsc.edu/ce.html, or the database and software downloaded from the site for local use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The RESID Database is a comprehensive collection of annotations and structures for protein post-translational modifications including N-terminal, C-terminal and peptide chain cross-link modifications. The RESID Database includes systematic and frequently observed alternate names, Chemical Abstracts Service registry numbers, atomic formulas and weights, enzyme activities, taxonomic range, keywords, literature citations with database cross-references, structural diagrams and molecular models. The NRL-3D Sequence–Structure Database is derived from the three-dimensional structure of proteins deposited with the Research Collaboratory for Structural Bioinformatics Protein Data Bank. The NRL-3D Database includes standardized and frequently observed alternate names, sources, keywords, literature citations, experimental conditions and searchable sequences from model coordinates. These databases are freely accessible through the National Cancer Institute–Frederick Advanced Biomedical Computing Center at these web sites: http://www.ncifcrf.gov/RESID, http://www.ncifcrf.gov/ NRL-3D; or at these National Biomedical Research Foundation Protein Information Resource web sites: http://pir.georgetown.edu/pirwww/dbinfo/resid.html, http://pir.georgetown.edu/pirwww/dbinfo/nrl3d.html

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent improvements of a hierarchical ab initio or de novo approach for predicting both α and β structures of proteins are described. The united-residue energy function used in this procedure includes multibody interactions from a cumulant expansion of the free energy of polypeptide chains, with their relative weights determined by Z-score optimization. The critical initial stage of the hierarchical procedure involves a search of conformational space by the conformational space annealing (CSA) method, followed by optimization of an all-atom model. The procedure was assessed in a recent blind test of protein structure prediction (CASP4). The resulting lowest-energy structures of the target proteins (ranging in size from 70 to 244 residues) agreed with the experimental structures in many respects. The entire experimental structure of a cyclic α-helical protein of 70 residues was predicted to within 4.3 Å α-carbon (Cα) rms deviation (rmsd) whereas, for other α-helical proteins, fragments of roughly 60 residues were predicted to within 6.0 Å Cα rmsd. Whereas β structures can now be predicted with the new procedure, the success rate for α/β- and β-proteins is lower than that for α-proteins at present. For the β portions of α/β structures, the Cα rmsd's are less than 6.0 Å for contiguous fragments of 30–40 residues; for one target, three fragments (of length 10, 23, and 28 residues, respectively) formed a compact part of the tertiary structure with a Cα rmsd less than 6.0 Å. Overall, these results constitute an important step toward the ab initio prediction of protein structure solely from the amino acid sequence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A class of potent nonpeptidic inhibitors of human immunodeficiency virus protease has been designed by using the three-dimensional structure of the enzyme as a guide. By employing iterative protein cocrystal structure analysis, design, and synthesis the binding affinity of the lead compound was incrementally improved by over four orders of magnitude. An inversion in inhibitor binding mode was observed crystallographically, providing information critical for subsequent design and highlighting the utility of structural feedback in inhibitor optimization. These inhibitors are selective for the viral protease enzyme, possess good antiviral activity, and are orally available in three species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For determining functionality dependencies between two proteins, both represented as 3D structures, it is an essential condition that they have one or more matching structural regions called patches. As 3D structures for proteins are large, complex and constantly evolving, it is computationally expensive and very time-consuming to identify possible locations and sizes of patches for a given protein against a large protein database. In this paper, we address a vector space based representation for protein structures, where a patch is formed by the vectors within the region. Based on our previews work, a compact representation of the patch named patch signature is applied here. A similarity measure of two patches is then derived based on their signatures. To achieve fast patch matching in large protein databases, a match-and-expand strategy is proposed. Given a query patch, a set of small k-sized matching patches, called candidate patches, is generated in match stage. The candidate patches are further filtered by enlarging k in expand stage. Our extensive experimental results demonstrate encouraging performances with respect to this biologically critical but previously computationally prohibitive problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After decades of slow progress, the pace of research on membrane protein structures is beginning to quicken thanks to various improvements in technology, including protein engineering and microfocus X-ray diffraction. Here we review these developments and, where possible, highlight generic new approaches to solving membrane protein structures based on recent technological advances. Rational approaches to overcoming the bottlenecks in the field are urgently required as membrane proteins, which typically comprise ~30% of the proteomes of organisms, are dramatically under-represented in the structural database of the Protein Data Bank.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computing the similarity between two protein structures is a crucial task in molecular biology, and has been extensively investigated. Many protein structure comparison methods can be modeled as maximum weighted clique problems in specific k-partite graphs, referred here as alignment graphs. In this paper we present both a new integer programming formulation for solving such clique problems and a dedicated branch and bound algorithm for solving the maximum cardinality clique problem. Both approaches have been integrated in VAST, a software for aligning protein 3D structures largely used in the National Center for Biotechnology Information, an original clique solver which uses the well known Bron and Kerbosch algorithm (BK). Our computational results on real protein alignment instances show that our branch and bound algorithm is up to 116 times faster than BK.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Protein structural alignment is one of the most fundamental and crucial areas of research in the domain of computational structural biology. Comparison of a protein structure with known structures helps to classify it as a new or belonging to a known group of proteins. This, in turn, is useful to determine the function of protein, its evolutionary relationship with other protein molecules and grasping principles underlying protein architecture and folding. Results: A large number of protein structure alignment methods are available. Each protein structure alignment tool has its own strengths andweaknesses that need to be highlighted.We compared and presented results of six most popular and publically available servers for protein structure comparison. These web-based servers were compared with the respect to functionality (features provided by these servers) and accuracy (how well the structural comparison is performed). The CATH was used as a reference. The results showed that overall CE was top performer. DALI and PhyreStorm showed similar results whereas PDBeFold showed the lowest performance. In case of few secondary structural elements, CE, DALI and PhyreStorm gave 100% success rate. Conclusion: Overall none of the structural alignment servers showed 100% success rate. Studies of overall performance, effect of mainly alpha and effect of mainly beta showed consistent performance. CE, DALI, FatCat and PhyreStorm showed more than 90% success rate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hantaviruses, members of the genus Hantavirus in the Bunyaviridae family, are enveloped single-stranded RNA viruses with tri-segmented genome of negative polarity. In humans, hantaviruses cause two diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS), which vary in severity depending on the causative agent. Each hantavirus is carried by a specific rodent host and is transmitted to humans through excreta of infected rodents. The genome of hantaviruses encodes four structural proteins: the nucleocapsid protein (N), the glycoproteins (Gn and Gc), and the polymerase (L) and also the nonstructural protein (NSs). This thesis deals with the functional characterization of hantavirus N protein with regard to its structure. Structural studies of the N protein have progressed slowly and the crystal structure of the whole protein is still not available, therefore biochemical assays coupled with bioinformatical modeling proved essential for studying N protein structure and functions. Presumably, during RNA encapsidation, the N protein first forms intermediate trimers and then oligomers. First, we investigated the role of N-terminal domain in the N protein oligomerization. The results suggested that the N-terminal region of the N protein forms a coiled-coil, in which two antiparallel alpha helices interact via their hydrophobic seams. Hydrophobic residues L4, I11, L18, L25 and V32 in the first helix and L44, V51, L58 and L65 in the second helix were crucial for stabilizing the structure. The results were consistent with the head-to-head, tail-to-tail model for hantavirus N protein trimerization. We demonstrated that an intact coiled-coil structure of the N terminus is crucial for the oligomerization capacity of the N protein. We also added new details to the head-to-head, tail-to-tail model of trimerization by suggesting that the initial step is based on interaction(s) between intact intra-molecular coiled-coils of the monomers. We further analyzed the importance of charged aa residues located within the coiled-coil for the N protein oligomerization. To predict the interacting surfaces of the monomers we used an upgraded in silico model of the coiled-coil domain that was docked into a trimer. Next the predicted target residues were mutated. The results obtained using the mammalian two-hybrid assay suggested that conserved charged aa residues within the coiled-coil make a substantial contribution to the N protein oligomerization. This contribution probably involves the formation of interacting surfaces of the N monomers and also stabilization of the coiled-coil via intramolecular ionic bridging. We proposed that the tips of the coiled-coils are the first to come into direct contact and thus initiate tight packing of the three monomers into a compact structure. This was in agreement with the previous results showing that an increase in ionic strength abolished the interaction between N protein molecules. We also showed that residues having the strongest effect on the N protein oligomerization are not scattered randomly throughout the coiled-coil 3D model structure, but form clusters. Next we found evidence for the hantaviral N protein interaction with the cytoplasmic tail of the glycoprotein Gn. In order to study this interaction we used the GST pull-down assay in combination with mutagenesis technique. The results demonstrated that intact, properly folded zinc fingers of the Gn protein cytoplasmic tail as well as the middle domain of the N protein (that includes aa residues 80 248 and supposedly carries the RNA-binding domain) are essential for the interaction. Since hantaviruses do not have a matrix protein that mediates the packaging of the viral RNA in other negatve stranded viruses (NSRV), hantaviral RNPs should be involved in a direct interaction with the intraviral domains of the envelope-embedded glycoproteins. By showing the N-Gn interaction we provided the evidence for one of the crucial steps in the virus replication at which RNPs are directed to the site of the virus assembly. Finally we started analysis of the N protein RNA-binding region, which is supposedly located in the middle domain of the N protein molecule. We developed a model for the initial step of RNA-binding by the hantaviral N protein. We hypothesized that the hantaviral N protein possesses two secondary structure elements that initiate the RNA encapsidation. The results suggest that amino acid residues (172-176) presumably act as a hook to catch vRNA and that the positively charged interaction surface (aa residues 144-160) enhances the initial N-RNA interacation. In conclusion, we elucidated new functions of hantavirus N protein. Using in silico modeling we predicted the domain structure of the protein and using experimental techniques showed that each domain is responsible for executing certain function(s). We showed that intact N terminal coiled-coil domain is crucial for oligomerization and charged residues located on its surface form a interaction surface for the N monomers. The middle domain is essential for interaction with the cytoplasmic tail of the Gn protein and RNA binding.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

G-protein coupled receptors (GPCRs) form a large family of proteins and are very important drug targets. They are membrane proteins, which makes computational prediction of their structure challenging. Homology modeling is further complicated by low sequence similarly of the GPCR superfamily.

In this dissertation, we analyze the conserved inter-helical contacts of recently solved crystal structures, and we develop a unified sequence-structural alignment of the GPCR superfamily. We use this method to align 817 human GPCRs, 399 of which are nonolfactory. This alignment can be used to generate high quality homology models for the 817 GPCRs.

To refine the provided GPCR homology models we developed the Trihelix sampling method. We use a multi-scale approach to simplify the problem by treating the transmembrane helices as rigid bodies. In contrast to Monte Carlo structure prediction methods, the Trihelix method does a complete local sampling using discretized coordinates for the transmembrane helices. We validate the method on existing structures and apply it to predict the structure of the lactate receptor, HCAR1. For this receptor, we also build extracellular loops by taking into account constraints from three disulfide bonds. Docking of lactate and 3,5-dihydroxybenzoic acid shows likely involvement of three Arg residues on different transmembrane helices in binding a single ligand molecule.

Protein structure prediction relies on accurate force fields. We next present an effort to improve the quality of charge assignment for large atomic models. In particular, we introduce the formalism of the polarizable charge equilibration scheme (PQEQ) and we describe its implementation in the molecular simulation package Lammps. PQEQ allows fast on the fly charge assignment even for reactive force fields.