989 resultados para Protein 5b Polymerase


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Escherichia coli RNA polymerase (RNAP) alpha subunit serves as the initiator for RNAP assembly, which proceeds according to the pathway 2 alpha-->alpha 2-->alpha 2 beta-->alpha 2 beta beta'-->alpha 2 beta beta' sigma. In this work, we have used hydroxyl-radical protein footprinting to define determinants of alpha for interaction with beta, beta', and sigma. Our results indicate that amino acids 30-75 of alpha are protected from hydroxyl-radical-mediated proteolysis upon interaction with beta (i.e., in alpha 2 beta, alpha 2 beta beta', and alpha 2 beta beta' sigma), and amino acids 175-210 of alpha are protected from hydroxyl-radical-mediated proteolysis upon interaction with beta' (i.e., in alpha 2 beta beta' and alpha 2 beta beta' sigma). The protected regions are conserved in the alpha homologs of prokaryotic, eukaryotic, archaeal, and chloroplast RNAPs and contain sites of substitutions that affect RNAP assembly. We conclude that the protected regions define determinants of alpha for direct functional interaction with beta and beta'. The observed maximal magnitude of protection upon interaction with beta and the observed maximal magnitude of protection upon interaction with beta' both correspond to the expected value for complete protection of one of the two alpha protomers of RNAP (i.e., 50% protection). We propose that only one of the two alpha protomers of RNAP interacts with beta and that only one of the two alpha protomers of RNAP interacts with beta'.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Regulatory protein p4 from Bacillus subtilis phage phi 29 represses the strong viral A2c promoter (PA2c) by preventing promoter clearance; it allows RNA polymerase to bind to the promoter and form an initiated complex, but the elongation step is not reached. Protein p4 binds at PA2c immediately upstream from RNA polymerase; repression involves a contact between both proteins that holds the RNA polymerase at the promoter. This contact is held mainly through p4 residue Arg120, which is also required for activation of the phi 29 late A3 promoter. We have investigated which region of RNA polymerase contacts protein p4 at PA2c. Promoter repression was impaired when a reconstituted RNA polymerase lacking the 15 C-terminal residues of the alpha subunit C-terminal domain was used; this polymerase was otherwise competent for transcription. Binding cooperativity assays indicated that protein p4 cannot interact with this mutant RNA polymerase at PA2c. Protein p4 could form a complex at PA2c with purified wild-type alpha subunit, but not with a deletion mutant lacking the 15 C-terminal residues. Our results indicate that protein p4 represses PA2c by interacting with the C-terminal domain of the alpha subunit of RNA polymerase. Therefore, this domain of the alpha subunit can receive regulatory signals not only from transcriptional activators, but from repressors also.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Regulatory protein p4 from Bacillus subtilis phage phi29 activates transcription from the viral late A3 promoter by stabilizing sigmaA-RNA polymerase at the promoter as a closed complex. Activation requires an interaction between protein p4 and RNA polymerase mediated by the protein p4 carboxyl-end, mainly through residue Arg-120. We have obtained derivatives of B. subtilis RNA polymerase alpha subunit with serial deletions at the carboxyl-end and reconstituted RNA polymerase holoenzymes harboring the mutant alpha subunits. Protein p4 promoted the binding of purified B. subtilis RNA polymerase alpha subunit to the A3 promoter in a cooperative way. Binding was abolished by deletion of the last 15 amino acids of the alpha subunit. Reconstituted RNA polymerases with deletions of 15 to 59 residues at the alpha subunit carboxyl-end could recognize and transcribe viral promoters not activated by protein p4, but they had lost their ability to recognize the A3 promoter in the presence of protein p4. In addition, these mutant reconstituted RNA polymerases could not interact with protein p4. We conclude that protein p4 activation of the viral A3 promoter requires an interaction between the carboxyl-end of protein p4 and the carboxyl-end of the alpha subunit of B. subtilis RNA polymerase that stabilizes the RNA polymerase at the promoter.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Stage specific activator protein (SSAP) is a member of a newly discovered class of transcription factors that contain motifs more commonly found in RNA-binding proteins. Previously, we have shown that SSAP specifically binds to its recognition sequence in both the double strand and the single strand form and that this DNA-binding activity is localized to the N-terminal RNA recognition motif domain. Three copies of this recognition sequence constitute an enhancer element that is directly responsible for directing the transcriptional activation of the sea urchin late histone H1 gene at the midblastula stage of embryogenesis. Here we show that the remainder of the SSAP polypeptide constitutes an extremely potent bipartite transcription activation domain that can function in a variety of mammalian cell lines. This activity is as much as 3 to 5 times stronger than VP16 at activating transcription and requires a large stretch of amino acids that contain glutamine-glycine rich and serine-threonine-basic amino acid rich regions. We present evidence that SSAP's activation domain shares targets that are also necessary for activation by E1a and VP16. Finally, SSAP's activation domain is found to participate in specific interactions in vitro with the basal transcription factors TATA-binding protein, TFIIB, TFIIF74, and dTAF(II) 110.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The RNA polymerase II and III small nuclear RNA (snRNA) promoters contain a common basal promoter element, the proximal sequence element (PSE). The PSE binds a multisubunit complex we refer to as the snRNA activating protein complex (SNAPc). At least four polypeptides are visible in purified SNAPc preparations, which migrate with apparent molecular masses of 43, 45, 50, and 190 kDa on SDS/polyacrylamide gels. In addition, purified preparations of SNAPc contain variable amounts of TATA box binding protein (TBP). An important question is whether the PSEs of RNA polymerase II and III snRNA promoters recruit the exact same SNAP complex or slightly different versions of SNAPc, differing, for example, by the presence or absence of a subunit. To address this question, we are isolating cDNAs encoding different subunits of SNAPc. We have previously isolated the cDNA encoding the 43-kDa subunit SNAP43. We now report the isolation of the cDNA that encodes the p45 polypeptide. Antibodies directed against p45 retard the mobility of the SNAPc-PSE complex in an electrophoretic mobility shift assay, indicating that p45 is indeed part of SNAPc. We therefore refer to this protein as SNAP45. SNAP45 is exceptionally proline-rich, interacts strongly with TBP, and, like SNAP43, is required for both RNA polymerase II and III transcription of snRNA genes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have used a nonspecific protein cleaving reagent to map the interactions between subunits of the multisubunit enzyme RNA polymerase (Escherichia coli). We developed suitable conditions for using an untethered Fe-EDTA reagent, which does not bind significantly to proteins. Comparison of the cleaved fragments of the subunits from the core enzyme (alpha 2 beta beta') and the holoenzyme (core+sigma 70) shows that absence of the sigma 70 subunit is associated with the appearance of several cleavage sites on the subunits beta (within 10 residues of sequence positions 745, 764, 795, and 812) and beta' (within 10 residues of sequence positions 581, 613, and 728). A cleavage site near beta residue 604 is present in the holoenzyme but absent in the core, demonstrating that a conformational change occurs when sigma 70 binds. No differences are observed for the alpha subunit.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Rhizobium meliloti C4-dicarboxylic acid transport protein D (DCTD) activates transcription by a form of RNA polymerase holoenzyme that has sigma 54 as its sigma factor (referred to as E sigma 54). DCTD catalyzes the ATP-dependent isomerization of closed complexes between E sigma 54 and the dctA promoter to transcriptionally productive open complexes. Transcriptional activation probably involves specific protein-protein interactions between DCTD and E sigma 54. Interactions between sigma 54-dependent activators and E sigma 54 are transient, and there has been no report of a biochemical assay for contact between E sigma 54 and any activator to date. Heterobifunctional crosslinking reagents were used to examine protein-protein interactions between the various subunits of E sigma 54 and DCTD. DCTD was crosslinked to Salmonella typhimurium sigma 54 with the crosslinking reagents succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate and N-hydroxysulfosuccinimidyl-4-azidobenzoate. Cys-307 of sigma 54 was identified by site-directed mutagenesis as the residue that was crosslinked to DCTD. DCTD was also crosslinked to the beta subunit of Escherichia coli core RNA polymerase with succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate, but not with N-hydroxysulfosuccinimidyl-4-azidobenzoate. These data suggest that interactions of DCTD with sigma 54 and the beta subunit may be important for transcriptional activation and offer evidence for interactions between a sigma 54-dependent activator and sigma 54, as well as the beta subunit of RNA polymerase.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The herpes simplex virus 1 (HSV-1) genome encodes seven polypeptides that are required for its replication. These include a heterodimeric DNA polymerase, a single-strand-DNA-binding protein, a heterotrimeric helicase/primase, and a protein (UL9 protein) that binds specifically to an HSV-1 origin of replication (oris). We demonstrate here that UL9 protein interacts specifically with the 180-kDa catalytic subunit of the cellular DNA polymerase alpha-primase. This interaction can be detected by immunoprecipitation with antibodies directed against either of these proteins, by gel mobility shift of an oris-UL9 protein complex, and by stimulation of DNA polymerase activity by the UL9 protein. These findings suggest that enzymes required for cellular DNA replication also participate in HSV-1 DNA replication.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The sliding clamp of the Escherichia coli replisome is now understood to interact with many proteins involved in DNA synthesis and repair. A universal interaction motif is proposed to be one mechanism by which those proteins bind the E. coli sliding clamp, a homodimer of the beta subunit, at a single site on the dimer. The numerous beta(2)-binding proteins have various versions of the consensus interaction motif, including a related hexameric sequence. To determine if the variants of the motif could contribute to the competition of the beta-binding proteins for the beta(2) site, synthetic peptides derived from the putative beta(2)-binding motifs were assessed for their abilities to inhibit protein-beta(2) interactions, to bind directly to beta(2), and to inhibit DNA synthesis in vitro. A hierarchy emerged, which was consistent with sequence similarity to the pentameric consensus motif, QL(S/D)LF, and peptides containing proposed hexameric motifs were shown to have activities comparable to those containing the consensus sequence. The hierarchy of peptide binding may be indicative of a competitive hierarchy for the binding of proteins to beta(2) in various stages or circumstances of DNA replication and repair.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Glioblastoma (GBM) is a highly aggressive and fatal brain cancer that is associated with a number of diagnostic, therapeutic, and treatment monitoring challenges. At the time of writing, inhibition of a protein called poly (ADP-ribose) polymerase-1 (PARP-1) in combination with chemotherapy was being investigated as a novel approach for the treatment of these tumours. However, human studies have encountered toxicity problems due to sub-optimal PARP-1 inhibitor and chemotherapeutic dosing regiments. Nuclear imaging of PARP-1 could help to address these issues and provide additional insight into potential PARP-1 inhibitor resistance mechanisms. Furthermore, nuclear imaging of the translocator protein (TSPO) could be used to improve GBM diagnosis, pre-surgical planning, and treatment monitoring as TSPO is overexpressed by GBM lesions in good contrast to surrounding brain tissue. To date, relatively few nuclear imaging radiotracers have been discovered for PARP-1. On the other hand, numerous tracers exist for TSPO many of which have been investigated in humans. However, these TSPO radiotracers suffer from either poor pharmacokinetic properties or high sensitivity to human TSPO polymorphism that can affect their binding to TSPO. Bearing in mind the above and the high attrition rates associated with advancement of radiotracers to the clinic, there is a need for novel radiotracers that can be used to image PARP-1 and TSPO. This thesis reports the pre-clinical discovery programme that led to the identification of two potent PARP-1 inhibitors, 4 and 17, that were successfully radiolabelled to generate the potential SPECT and PET imaging agents [123I]-4 and [18F]-17 respectively. Evaluation of these radiotracers in mice bearing subcutaneous human GBM xenografts using ex vivo biodistribution techniques revealed that the agents were retained in tumour tissue due to specific PARP-1 binding. This thesis also describes the pre-clinical in vivo evaluation of [18F]-AB5186, which is a novel radiotracer discovered previously within the research group with potential for PET imaging of TSPO. Using ex vivo autoradiography and PET imaging the agent was revealed to accumulate in intracranial human GBM tumour xenografts in good contrast to surrounding brain tissue, which was due to specific binding to TSPO. The in vivo data for all three radiolabelled compounds warrants further pre-clinical investigations with potential for clinical advancement in mind.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We sequenced cDNAs coding for chicken cellular nucleic acid binding protein (CNBP). Two slightly different variations of the open reading frame were found, each of which translates into a protein with seven zinc finger domains. The longest transcript contains an in-frame insert of 3 bp. The sequence conservation between chick CNBP cDNAs with human, rat and mouse CNBP cDNAs is extreme, especially in the coding region, where the deduced amino acid sequence identity with human, rat and mouse CNBP is 99%. CNBP-like transcripts were also found in various tissues from insect, shrimp, fish and lizard. Regions with remarkable nucleotide conservation were also found in the 3' untranslated region, indicating important functions for these regions. Quantitative reverse transcription polymerase chain reaction (RT-PCR) indicated that in the chick, CNBP is present in all tissues examined in approximately equal ratios to total RNA. RT-PCR of total RNA isolated from different phyla indicate CNBP-like proteins art widespread throughout the animal kingdom. The extraordinary level of conservation suggests an important physiological role for CNBP. (C) 1997 Elsevier Science Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spectrum of protein tyrosine phosphatases (PTPs) expressed in bone marrow-derived murine macrophages (BMMs) was examined using reverse transcriptase-polymerase chain reaction. Ten different PTP cDNAs were isolated and in this study we focus on mDEP-1, a type III receptor PTP. Three mDEP-1 transcripts were expressed in primary macrophages and macrophage cell lines and were induced during macrophage differentiation of M1 myeloid leukemia cells. A valiant mRNA Tvas identified that encodes an alternate carboxyl-terminus and 3' UTR. The expression of mDEP-1 was down-regulated by CSF-1 (macrophage colony-stimulating factor) and up-regulated by bacterial lipopolysaccharide, an important physiological regulator of macrophage function that opposes CSF-1 action. Whole mount irt situ hybridization, and immunolocalization of the protein, confirmed that mDEP-1 is expressed by a subset of embryonic macrophages in the liver and mesenchyme. mDEP-1 was also detected in the eye and peripheral nervous system of the developing embryo. Attempts to express mDEP-1 constitutively in the macrophage cell line RAW264 were unsuccessful, with results suggesting that the gene product inhibits cell proliferation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A genomic region containing the fatty acid biosynthetic (fab) genes was isolated from the sugarcane leaf-scald pathogen Xanthomonasalbilineans. The order and predicted products of fabG (beta -ketoacyl reductase), acpP (acyl carrier protein), fabF(ketoacyl synthase II) and downstream genes in X. albilineans are very similar to those in Escherichia coli, with one exception. Sequence analysis, confirmed by insertional knockout and specific substrate feeding experiments, shows that the position occupied by pabC (encoding aminodeoxychorismate lyase) in other bacteria is occupied instead by pabB (encoding aminodeoxychorismate synthase component I) in X. albilineans. Downstream of pabB, X. albilineans resumes the arrangement common to characterized Gram-negative bacteria, with three transcriptionally coupled genes, encoding an ORF340 protein of undefined function, thymidylate kinase and delta' subunit of DNA polymerase III holoenzyme (HolB). Different species may obtain a common advantage from coordinated regulation of the same biosynthetic pathways using different genes in this region. (C) 2000 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The beta subunit of the Escherichia coli replicative DNA polymerase III holoenzyme is the sliding clamp that interacts with the alpha (polymerase) subunit to maintain the high processivity of the enzyme. The beta protein is a ring-shaped dimer of 40.6 kDa subunits whose structure has previously been determined at a resolution of 2.5 Angstrom [Kong et al. (1992), Cell, 69, 425-437]. Here, the construction of a new plasmid that directs overproduction of beta to very high levels and a simple procedure for large-scale purification of the protein are described. Crystals grown under slightly modified conditions diffracted to beyond 1.9 Angstrom at 100 K at a synchrotron source. The structure of the beta dimer solved at 1.85 Angstrom resolution shows some differences from that reported previously. In particular, it was possible at this resolution to identify residues that differed in position between the two subunits in the unit cell; side chains of these and some other residues were found to occupy alternate conformations. This suggests that these residues are likely to be relatively mobile in solution. Some implications of this flexibility for the function of beta are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Myb-binding protein 1a (Mybbp1a) is a novel nuclear protein localized predominantly, but not exclusively, in nucleoli. Although initially isolated as a c-Myb interacting protein, Mybbp1a is expressed ubiquitously, associates with a number of different transcription factors, and may play a role in both RNA polymerase I- and II-mediated transcriptional regulation. However, its precise function remains unclear. In this study we show that Mybbp1a is a nucleocytoplasmic shuttling protein and investigate the mechanisms responsible for both nuclear import and export. The carboxyl terminus of Mybbp1a, which contains seven short basic amino acid repeat sequences, is responsible for both nuclear and nucleolar localization, and this activity can be transferred to a heterologous protein. Deletion mapping demonstrated that these repeat sequences appear to act incrementally, with successive deletions resulting in a corresponding increase in the proportion of protein localized in the cytoplasm. Glutathione S-transferase pulldown experiments showed that the nuclear receptor importin-alpha/beta mediates Mybbp1a nuclear import. Interspecies heterokaryons were used to demonstrate that Mybbp1a was capable of shuttling between the nucleus and the cytoplasm. Deletion analysis and in vivo export studies using a heterologous assay system identified several nuclear export sequences which facilitate Mybbp1a nuclear export of Mybbp1a by CRM1-dependent and -independent pathways. (C) 2003 Elsevier Science (USA). All rights reserved.