956 resultados para Proteína X associada a bcl-2
Resumo:
Melanoma is one of the most aggressive types of skin cancer and its incidence rate is still increasing. All existing treatments are minimally effective. Consequently, new therapeutic agents for melanoma treatment should be developed. The DM-1 compound is a curcumin analog that possesses several curcumin characteristics, such as antiproliferative, antitumor, and anti-metastatic properties. The aim of this study was to evaluate the different signaling pathways involved in the cytotoxic effect of DM-1 on melanoma cells. The apoptotic process and cytoskeletal changes were evaluated by immunoblotting and immunofluorescence, respectively, in melanoma cells. After DM-1 treatment, SK-MEL-5 melanoma cells showed actin filament disorganization with spicule formation throughout the cytoskeleton and significant reduction of focal adhesion as well as they were present only at cell extremities, conferring a poor connection between the cell and the substrate. Besides this, there was significant filopodium retraction and loss of typical cytoskeleton scaffold. These modifications contributed to cell detachment followed by cell death. Furthermore, DM-1-induced apoptosis was triggered by multiple Bcl-2 proteins involved in both the extrinsic and the intrinsic apoptotic pathways. SK-MEL-5 cells showed a death mechanism mainly by Bcl-2/Bax ratio decrease, whereas A375 cells presented apoptosis induction by Mcl-1 and Bcl-xL downregulation. In SK-MEL-5 and A375 melanoma cells, there was a significant increase in the active form of caspase 9, and the inactive form of the effector caspase 3 was decreased in both cell lines. Expression of cleaved poly ADP ribose polymerase was increased after DM-1 treatment in these melanoma cell lines, demonstrating that the apoptotic process occurred. Altogether, these data elucidate the cellular and molecular mechanisms involved in the cytotoxicity induced by the antitumor agent DM-1 in melanoma cells.
Resumo:
The reaction of an aqueous solution of poly(ethylene oxide) (peo - mw 100.000) with a neutral aqueous suspension of single layers of MoS2 was studied. The single layers aqueous suspension was prepared by first intercalating lithium (using n-Butyllithium in n-hexane) and reaction of these ternary compound with water under ultrasound stirring. The suspension was washed several times with water until neutral pH. The suspension was mixed with the PEO aqueous solution in the presence of KCl. Two single phase compounds were obtained with the expansion of 4,8 and 9,0Å, attributed to the solvation of the intercalated potassium cations with mono and double layers, respectively.
Resumo:
Prodigiosin and obatoclax, members of the prodiginines family, are small molecules with anti-cancer properties that are currently under preclinical and clinical trials. The molecular target(s) of these agents, however, is an open question. Combining experimental and computational techniques we find that prodigiosin binds to the BH3 domain in some BCL-2 protein families, which play an important role in the apoptotic programmed cell death. In particular, our results indicate a large affinity of prodigiosin for MCL-1, an anti-apoptotic member of the BCL-2 family. In melanoma cells, we demonstrate that prodigiosin activates the mitochondrial apoptotic pathway by disrupting MCL-1/BAK complexes. Computer simulations with the PELE software allow the description of the induced fit process, obtaining a detailed atomic view of the molecular interactions. These results provide new data to understand the mechanism of action of these molecules, and assist in the development of more specific inhibitors of anti-apoptotic BCL-2 proteins.
Resumo:
The aim of this study was to investigate the diagnosis delay and its impact on the stage of disease. The study also evaluated a nuclear DNA content, immunohistochemical expression of Ki-67 and bcl-2, and the correlation of these biological features with the clinicopathological features and patient outcome. 200 Libyan women, diagnosed during 2008–2009 were interviewed about the period from the first symptoms to the final histological diagnosis of breast cancer. Also retrospective preclinical and clinical data were collected from medical records on a form (questionnaire) in association with the interview. Tumor material of the patients was collected and nuclear DNA content analysed using DNA image cytometry. The expression of Ki-67 and bcl-2 were assessed using immunohistochemistry (IHC). The studies described in this thesis show that the median of diagnosis time for women with breast cancer was 7.5 months and 56% of patients were diagnosed within a period longer than 6 months. Inappropriate reassurance that the lump was benign was an important reason for prolongation of the diagnosis time. Diagnosis delay was also associated with initial breast symptom(s) that did not include a lump, old age, illiteracy, and history of benign fibrocystic disease. The patients who showed diagnosis delay had bigger tumour size (p<0.0001), positive lymph nodes (p<0.0001), and high incidence of late clinical stages (p<0.0001). Biologically, 82.7% of tumors were aneuploid and 17.3% were diploid. The median SPF of tumors was 11% while the median positivity of Ki-67 was 27.5%. High Ki-67 expression was found in 76% of patients, and high SPF values in 56% of patients. Positive bcl-2 expression was found in 62.4% of tumors. 72.2% of the bcl-2 positive samples were ER-positive. Patients who had tumor with DNA aneuploidy, high proliferative activity and negative bcl-2 expression were associated with a high grade of malignancy and short survival. The SPF value is useful cell proliferation marker in assessing prognosis, and the decision cut point of 11% for SPF in the Libyan material was clearly significant (p<0.0001). Bcl-2 is a powerful prognosticator and an independent predictor of breast cancer outcome in the Libyan material (p<0.0001). Libyan breast cancer was investigated in these studies from two different aspects: health services and biology. The results show that diagnosis delay is a very serious problem in Libya and is associated with complex interactions between many factors leading to advanced stages, and potentially to high mortality. Cytometric DNA variables, proliferative markers (Ki-67 and SPF), and oncoprotein bcl-2 negativity reflect the aggressive behavior of Libyan breast cancer and could be used with traditional factors to predict the outcome of individual patients, and to select appropriate therapy.
Resumo:
The expression of P53, Bcl-2, Bax, Bag-1, and Mcl-1 proteins in CD5/CD20-positive B-chronic lymphocytic leukemia (B-CLL) cells from 30 typical CLL patients was evaluated before and after 48 h of incubation with 10-6 M fludarabine using multiparametric flow cytometric analysis. Protein expression was correlated with annexin V expression, Rai modified clinical staging, lymphocyte doubling time, and previous treatment. Our main goal was to determine the predictive value of these proteins in CLL cells in terms of disease evolution. Bcl-2 expression decreased from a median fluorescence index (MFI) of 331.71 ± 42.2 to 245.81 ± 52.2 (P < 0.001) after fludarabine treatment, but there was no difference between viable cells (331.57 ± 44.6 MFI) and apoptotic cells (331.71 ± 42.2 MFI) before incubation (P = 0.859). Bax expression was higher in viable cells (156.24 ± 32.2 MFI) than in apoptotic cells (133.56 ± 35.7 MFI) before incubation, probably reflecting defective apoptosis in CLL (P = 0.001). Mcl-1 expression was increased in fludarabine-resistant cells and seemed to be a remarkable protein for the inhibition of the apoptotic process in CLL (from 233.59 ± 29.8 to 252.04 ± 35.5; P = 0.033). After fludarabine treatment, Bag-1 expression was increased in fludarabine-resistant cells (from 425.55 ± 39.3 to 447.49 ± 34.5 MFI, P = 0.012), and interestingly, this higher expression occurred in patients who had a short lymphocyte doubling time (P = 0.022). Therefore, we could assume that Bag-1 expression in such situation might identify CLL patients who will need treatment earlier.
Resumo:
Ciliary neurotrophic factor (CNTF) is a cytokine that plays a neuroprotective role in relation to axotomized motoneurons. We determined the effect of daily subcutaneous doses of CNTF (1.2 µg/g for 5 days; N = 13) or PBS (N = 13) on the levels of mRNA for Bcl-2 and Bax, as well as the expression and inter-association of Bcl-2 and Bax proteins, and the survival of motoneurons in the spinal cord lumbar enlargement of 2-day-old Wistar rats after sciatic nerve transection. Five days after transection, the effects were evaluated on histological and molecular levels using Nissl staining, immunoprecipitation, Western blot analysis, and reverse transcriptase-polymerase chain reaction. The motoneuron survival ratio, defined as the ratio between the number of motoneurons counted on the lesioned side vs those on the unlesioned side, was calculated. This ratio was 0.77 ± 0.02 for CNTF-treated rats vs 0.53 ± 0.02 for the PBS-treated controls (P < 0.001). Treatment with CNTF modified the level of mRNA, with the expression of Bax RNA decreasing 18% (with a consequent decrease in the level of Bax protein), while the expression of Bcl-2 RNA was increased 87%, although the level of Bcl-2 protein was unchanged. The amount of Bcl-2/Bax heterodimer increased 91% over that found in the PBS-treated controls. These data show, for the first time, that the neuroprotective effect of CNTF on neonatal rat axotomized motoneurons is associated with a reduction in free Bax, due to the inhibition of Bax expression, as well as increased Bcl-2/Bax heterodimerization. Thus, the neuroprotective action of the CNTF on axotomized motoneurons can be related to the inhibition of this apoptotic pathway.
Resumo:
Small cell lung cancer (SCLC) is an aggressive disease, representing 15% of all cases of lung cancer, has high metastatic potential and low prognosis that urgently demands the development of novel therapeutic approaches. One of the proposed approaches has been the down-regulation of BCL2, with poorly clarified and controversial therapeutic value regarding SCLC. The use of anti-BCL2 small interfering RNA (siRNA) in SCLC has never been reported. The aim of the present study was to select and test the in vitro efficacy of anti-BCL2 siRNA sequences against the protein and mRNA levels of SCLC cells, and their effects on cytotoxicity and chemosensitization. Two anti-BCL2 siRNAs and the anti-BCL2 G3139 oligodeoxynucleotide (ODN) were evaluated in SCLC cells by the simultaneous determination of Bcl-2 and viability using a flow cytometry method recently developed by us in addition to Western blot, real-time reverse-transcription PCR, and cell growth after single and combined treatment with cisplatin. In contrast to previous reports about the use of ODN, a heterogeneous and up to 80% sequence-specific Bcl-2 protein knockdown was observed in the SW2, H2171 and H69 SCLC cell lines, although without significant sequence-specific reduction of cell viability, cell growth, or sensitization to cisplatin. Our results question previous data generated with antisense ODN and supporting the present concept of the therapeutic interest in BCL2 silencing per se in SCLC, and support the growing notion of the necessity of a multitargeting molecular approach for the treatment of cancer.
Resumo:
Lipopolysaccharide exerts many effects on many cell lines, including cytokine secretion, and cell apoptosis and necrosis. We investigated the in vitro effects of lipopolysaccharide on apoptosis of cultured human dental pulp cells and the expression of Bcl-2 and Bax. Dental pulp cells showed morphologies typical of apoptosis after exposure to lipopolysaccharide. Flow cytometry showed that the rate of apoptosis of human dental pulp cells increased with increasing lipopolysaccharide concentration. Compared with controls, lipopolysaccharide promoted pulp cell apoptosis (P < 0.05) from 0.1 to 100 μg/mL but not at 0.01 μg/mL. Cell apoptosis was statistically higher after exposure to lipopolysaccharide for 3 days compared with 1 day, but no difference was observed between 3 and 5 days. Immunohistochemistry showed that expression of Bax and Bcl-2 was enhanced by lipopolysaccharide at high concentrations, but no evident expression was observed at low concentrations (0.01 and 0.1 μg/mL) or in the control groups. In conclusion, lipopolysaccharide induced dental pulp cell apoptosis in a dose-dependent manner, but apoptosis did not increase with treatment duration. The expression of the apoptosis regulatory proteins Bax and Bcl-2 was also up-regulated in pulp cells after exposure to a high concentration of lipopolysaccharide.
Resumo:
Beclin 1 plays a critical role in autophagy and functions as a haploinsufficient tumor suppressor. The expression and prognostic significance of beclin 1 in head and neck adenoid cystic carcinoma (ACC) are largely unexplored. Therefore, we investigated the expression of beclin 1, Bcl-2, and p53 in head and neck ACC tissue. Tissue samples from 35 cases (15 females, 20 males) of head and neck ACC were utilized for immunohistochemistry. Beclin 1 expression was observed in 32 cases (91.4%) and considered to be high in 15 cases (42.9%) and low in 20 cases (57.1%). Beclin 1 expression was significantly correlated with a histological growth pattern (P=0.046) and histological grade (P=0.037). Beclin 1 expression was inversely correlated with Bcl-2 expression (P=0.013) and significantly associated with overall survival (P=0.006). Bcl-2 and p53 expression were observed in 21 cases (60.0%) and 16 cases (45.7%). Bcl-2 expression was significantly correlated with perineural invasion (P=0.041) and not associated with overall survival (P=0.053). p53 expression was directly correlated with beclin 1 expression (P=0.044). Our results indicated that beclin 1 may be a novel, promising prognostic factor for clinical outcome in head and neck ACC patients and may play a part in the development of head and neck ACC by interacting with Bcl-2 and p53.
Resumo:
Physalis species are used in folk medicine for phytotherapeutic properties. The extracts of medicinal plants are known to possess cytotoxic and chemopreventative compounds. In this study we investigated antibacterial, antioxidant, DNA damage preventative properties of Physalis peruviana (golden berry) on leaf and shoot ethanol extracts and their effects on cytotoxicity of HeLa cells and expression of apoptotic pathway genes. Among the tested bacteria for antibacterial activity, maximum inhibition zone was determined in Lactococcus lactis. The phenolic content was found higher in leaf extracts than shoot extracts. The antioxidant activity showed the highest TEAC values of the leaf (2 mg/mL) and the shoot (0.5 mg/mL) extracts as 0.291±0.04 and 0.192±0.015, respectively. In DNA damage prevention assay both leaf and shoot extracts, especially 30 and 20 µg/mL concentrations, exhibited significant protection against DNA damage-induced by hydroxyl radical generated by Fenton reaction. Our results suggest that leaf and shoot extracts possess cytotoxic effect on HeLa cells when applied as 100 µg/mL concentration. Also mRNA expression analysis showed the alteration of antiapoptotic genes, so the results suggest that P. peruviana ethanol extracts induce apoptotic cell death and should be investigated for identification of active compounds and their mechanisms of action.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
Resumo:
Le neuroblastome (NB) est la tumeur solide extracranienne la plus fréquente chez le jeune enfant. En dépit de plusieurs avancements thérapeutiques, seulement 60% survivront à long terme. Cette résistance aux traitements est possiblement due, en partie, à la présence des cellules souches cancéreuses (CSC). PARP-1 joue un rôle important dans la chimiorésistance de certaines tumeurs et son inhibition a montré une potentialisation des agents anticancéreux conventionnels. De plus, Bcl-2 est surexprimé dans le NB et son expression accrue contribuerait à la résistance à la chimiothérapie. Le but de notre travail était de déterminer les effets in vitro d’un PARP inhibiteur, AG-014699 (AG), et d’un inhibiteur de Bcl-2, Obatoclax (Obx), in vitro et in vivo, en monothérapie ou en combinaison avec de la Doxorubicine (Doxo) ou du Cisplatin (Cis), deux agents anticancéreux classiquement utilisés dans le traitement du NB. Afin de déterminer l’expression de PARP-1 dans les tumeurs de NB, nous avons analysé une cohorte de 132 tumeurs. Nous avons utilisé le test MTT afin d’évaluer la sensibilité de 6 lignées cellulaires de NB et des CSC à un traitement avec AG seul ou en combinaison avec de la Doxo ou du Cis. Nous avons déterminé l’étendue de la mort cellulaire par Annexin-V et caractérisé les dommages à l’ADN à l’aide d’un marquage γH2aX. De plus, les modulations des voies de signalisation intracellulaire ont été analysées par Western Blot. La sensibilité des cellules à l’Obx a été analysée par MTT sur 6 lignées cellulaires de NB et sa combinaison avec le Cis a également été déterminée dans 2 lignées cellulaires. Le marquage Annexin-V et des combinaisons avec ZVAD-FMK ont aussi été utilisés pour caractériser les effets d’Obx sur l’apoptose. Des expériences in vivo ont également été faites. Nos résultats démontrent que l’expression de PARP-1 est associée aux tumeurs moins agressives. AG n’a peu ou pas effet sur la croissance tumorale et ne potentialise pas significativement les effets de la Doxo ou de Cis. AG combiné à la Doxo semble sensibiliser les CSC dans une lignée cellulaire. L’Annexin-V et le marquage γH2aX ne révèlent pas d’effets synergiques de cette combinaison et les dommages à l’ADN et la mort cellulaire observés sont attribués à la Doxo. Cependant, on observe une augmentation d’apoptose et de bris d’ADN dans une lignée cellulaire (SK-N-FI) lorsqu’AG est utilisé en monothérapie. On observe une surexpression de pAKT et pERK suite à la combinaison Doxo et AG. Les cellules de NB sont sensibles à l’Obx à des concentrations à l’échelle nanomolaire. De plus, Obx active la mort cellulaire par apoptose. Aussi, Obx a un effet synergique avec le Cis in vitro. In vivo, l’Obx diminue significativement la taille tumorale. Nous concluons que l’Obx présente une avenue thérapeutique prometteuse dans le traitement du NB alors que l’utilisation d’AG ne semble pas être aussi encourageante.
Resumo:
Objectif : Étudier les mécanismes apoptotiques impliqués dans la néphropathie diabétique en identifiant les gènes responsables de l’apoptose et activés par les espèces réactives de l’oxygène (ROS) dans les cellules de tubules proximaux rénaux (RPTC) de différents modèles diabétiques. Méthodes : Une hybridation par puce à AND a été réalisée sur les ARN extraits à partir de RPTC de souris heterozygotes db/m+, db/db and db/db catalase (CAT)-transgénique (Tg) de 20 semaines. Des expériences de PCR en temps réel et d’immunohistochimie réalisées sur ces modèles et sur le modèle ou le diabète avait été induit par traitement au streptozotocin (STZ) ont permis de valider les gènes apoptotiques identifiés par puce à ADN. Des RPTC immortalisées de rat ont été utilisées pour montrer l’activité de ces gènes apoptotique et la régulation de leur expression. De plus, une étude additionnelle réalisée sur des sections rénales provenant de patients diabétiques et non diabétiques a démontré également une surexpression de ces gènes apoptotiques dans les IRPTC. Résultats: L’expression de Bcl-2-modifying factor (Bmf), une protéine apoptotique, semble augmentée dans les RPTC de souris db/db comparé aux souris contrôles db/m+, ou aux souris db/db CAT-tg. La surexpression de Bmf a également été identifiée dans les RPTC du modèle diabétique STZ. La normalisation de l’hyperglycémie chez ces souris par traitement à l’insuline semble normaliser également l’expression de Bmf. In vitro, la surexpression du cDNA de Bmf dans les RPTC promouvoit l’apoptose et augmente l’activité de caspase 3. La stimulation de RPTC de Rat avec le glucose élevé (25mM de D-glucose) semble augmenter l’expression de Bmf et le traitement de ces cellules avec la roténone, les Diphénylène iodonium, la catalase et l’apocynine semble renverser cette stimulation. L’inhibition de Bmf avec un siRNA semble réduire l’apoptose induite par le glucose élevé. L’expression de Bmf a également été démontrée dans les RPTC de patients diabétiques. Conclusion: Ces résultats ont démontré une surexpression de Bmf dans les RPTC de différents modèles diabétiques et suggèrent son potentiel rôle dans la régulation de l’apoptose et de l’atrophie tubulaire chez les diabétiques.
Resumo:
Objective: Our research program has focused on the development of promising, soft alkylating N-phenyl-N’-(2-chloroethyl)urea (CEU) compounds which acylate the glutamic acid-198 of β-tubulin, near the binding site of colchicum alkaloids. CEUs inhibit the motility of cancerous cells in vitro and, interestingly, exhibit antiangiogenic and anticancer activity in vivo. Mitotic arrest induced by microtubule-interfering agents such as CEUs remains the major mechanism of their anticancer activity, leading to apoptosis. However, we recently demonstrated that microtubule disruption by CEUs and other common antimicrotubule agents greatly alters the integrity and organization of microtubule-associated structures, the focal adhesion contact, thereby initiating anoikis, an apoptosis-like cell death mechanism caused by the loss of cell contact with the extracellular matrix. Methods: To ascertain the activated signaling pathway profile of CEUs, flow cytometry, Western blot, immunohistochemistry and transfection experiments were performed. Wound-healing and chick embryo assays were carried out to evaluate the antiangiogenic potency of CEUs. Results: CEU-induced apoptosis involved early cell cycle arrest in G2/M and increased level of CDK1/cycline B proteins. These signaling events were followed by the specific activation of the intrinsic apoptosis pathway, involving loss of mitochondrial membrane potential (Δψm) and ROS production, cytochrome c release from mitochondria, caspase activation, AIF nuclear translocation, PARP cleavage and nuclear fragmentation. CEUs maintained their efficacy on cells plated on pro-survival extracellular matrices or exhibiting overexpression of P-glycoprotein or the anti-apoptotic protein Bcl-2. Conclusion: Our results suggest that CEUs represent a promising new class of antimicrotubule, antiangiogenic and pro-anoikis agents.