926 resultados para Propylene-glycol


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polylactide (PLA) was melt blended with a biodegradable hyperbranched poly(ester amide) (HBP) to enhance its flexibility and toughness without sacrificing comprehensive performance. The advantage of using HBP was due to its unique spherical shape, low melt viscosity, and abundant functional end groups together with its easy access. Rheological measurement showed that blending PLA with as little as 2.5% HBP resulted in a 40% reduction of melt viscosity. The glass transition temperature (T-g) of PLA in the blends decreased slightly with the increase of HBP content, indicating partial miscibility which resulted from intermolecular interactions via H-bonding. The H-bonding involving CO of PLA with OH and NH of HBP was evidenced by FTIR analysis for the first time. The HBP component, as a heterogeneous nucleating agent, accelerated the crystallization rate of PLA. Remarkably, with the increase of HBP content, the elongation at break of PLA blends dramatically increased without severe loss in tensile strength, even the tensile strength increased within 10% content of HBP. The stress-strain curves and the SEM photos of impact-fractured surface showed the material changed from brittle to ductile failure with the addition of HBP. Reasonable interfacial adhesion via H-bonding and finely dispersed particulate structure of HBP in PLA were proposed to be responsible for the improved mechanical properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polyurethane (PU) based on polyepichlorohydrin/poly(methyl methacrylate) (PECH/PMMA) interpenetrating polymer networks (IPNs) was synthesized by a simultaneous method. The effects of composition, hydroxyl group number of PECH, NCO/OH ratio and crosslinking agent content in IPNs were investigated in detail. Some other glycols, such as poly(ethylene glycol), poly(propylene glycol) and hydroxyl-terminated polybutadiene, were also used to obtain PU/PMMA IPNs. The interpenetrating and fracture behaviors of the IPNs are explained briefly.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the purpose of finding an ideal cryoprotectant or combination of cryoprotectants in a suitable concentration for flounder (Paralichthys olivaceus) embryo cryopreservation, we tested the toxicities, at culture temperature (16 degrees C), of five most commonly used cryoprotectants-dimethyl sulfoxide (Me2SO), glycerol, methanol (MeOH), 1,2-propylene glycol (PG) and ethylene glycol (EG). In addition, cryoprotective efficiency to flounder embryos of individual and combined cryoprotectants were tested at -15 degrees C for 60 min. Five different concentrations of each of the five cryoprotectants and 20 different combinations of these cryoprotectants were tested for their protective efficiency. The results showed that the toxicity to flounder embryos of the five cryoprotectants are in the following sequence: PG < MeOH < Me2SO < glycerol < EG (P < 0.05); whereas the protective efficiency of each cryoprotectant, at -15 degrees C for a period of 60 min, are in the following sequence: PG > Me2SO approximate to MeOH approximate to glycerol > EG (greater symbols mean P < 0.05, and approximate symbols mean P > 0.05). Methanol combined with any one of the other cryoprotectants gave the best protection, while ethylene glycol combined with any one of the other cryoprotectants gave the poorest protection at -15 degrees C. Toxicity effect was concentration dependent with the lowest concentration being the least toxic for all five cryoprotectants at 16 degrees C. For PG, MeOH and glycerol, 20% solutions gave the best protection at -15 degrees C; whereas a 15% solution of Me2SO, and a 10% solution of EG, gave the best protection at -15 degrees C. (c) 2004 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In old China there were very few people engaged in the study of the algae, but in new China, freshwater and marine algae are studied by over one hundred old and new phycologists. There is now an algal biotechnology industry consisting of an aquaculture industry, producing large amounts of the seaweeds Laminaria, Porphyra, Undaria, Gracilaria, eucheumoids, and the microalgae Dunaliella and Spirulina. There is also a phycocolloid industry, producing algin, agar and carrageenan; an industry producing chemicals and drugs, such as iodine, mannitol, phycocyanin, beta -carotene, PSS (propylene glycol alginate sulfate) and FPS (fucose-containing sulfated polysaccharides) and an industry producing food, feed and fertilizer. The Laminaria cultivation industry produces about 900,000 t dry Laminaria, probably the largest producer in the world and 13,000 t algin, undoubtedly one of the largest algin producer in the world.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study several parameters critical to the success of cryopreserving Sydney rock oyster (Saccostrea glomerata) larvae were investigated. They were: (1) cryoprotectants (10% dimethyl sulfoxide and 10% propylene glycol). (2) freezing protocols (with or without the seeding step). (3) larval concentrations (1,000, 3,000, 5,000, 10,000, 30,000 individuals mL(-1)). and (4) larval ages (6, 12, 24, 48 and 96 h old). The survival rates were determined as percentages of postthaw larvae performing active movements for the 6 and 12 h larvae or active cilia movement for the 24, 48 and 96 h larvae. Analyses showed that the difference in survival rates between different age classses was significant in all the experiments conducted, with the maximum survival rate being achieved in the 24-h-old larvae the postthaw survival rates of larvae cryopreserved with 10% dimethyl sulfoxide (93.1 +/- 0.2%) were significantly higher (P < 0.001) that those with 10% propylene glycol (81.5 +/- 0.4%). Differences in postthaw survival rates between different concentrations (1,000 30,000 individuals mL(-1)) were not significant within each of the three larval age classes (6-, 12-, and 24-h-old ) used.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objectives were to investigate the effect of cryoprotectants on the hatching rate of red seabream embryos. Heart-beat embryos were immersed in: five permeable cryoprotectants, dimethyl sulfoxide (DMSO), glycerol (Gly), methanol (MeOH), 1,2-propylene glycol (PG), and ethylene glycol (EG). in concentrations of 5-30% for 10, 30, or 60 min; and two non-permeable cryoprotectants: polyvinylpyrrolidone (PVP), and sucrose (in concentrations of 5-20% for 10 or 30 min). The embryos were then washed and incubated in filtered seawater until hatching occurred. The hatching rate of the embryos treated with permeable cryoprotectants decreased (P < 0.05) with increased concentration and duration of exposure. In addition, PG was the least toxic permeable cryoprotectant, followed by DMSO and EG, whereas Gly and MeOH were the most toxic. At a concentration of 15% and 30 min exposure, the hatching rate of the embryos immersed in PG was 93.3 +/- 7.0% (mean +/- S.D.), however. in DMSO. EG, Gly. and MeOH, it was 82.7 +/- 10.4, 22.0 +/- 5.7, 0.0 +/- 0.0, and 0.0 +/- 0.0%, respectively. Hatching rate of embryos treated with PVP decreased (P < 0.05) with the increase of concentration and exposure time, whereas for embryos treated with sucrose, there was no significant decrease in comparison with the control at the concentrations used. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective was to identify an appropriate cryoprotectant and protocol for vitrification of red sea bream (Pagrus major) embryos. The toxicity of five single-agent cryoprotectants, dimethyl sulfoxide (DMSO), propylene glycol (PG), ethylene glycol (EG), glycerol (GLY), and methyl alcohol (MeOH), as well as nine cryoprotectant mixtures, were investigated by comparing post-thaw hatching rates. Two vitrifying protocols, a straw method and a solid surface vitrification method (copper floating over liquid nitrogen), were evaluated on the basis of post-thaw embryo morphology. Exposure to single-agent cryoprotectants (10% concentration for 15 min) was not toxic to embryos, whereas for higher concentrations (20 and 30%) and a longer duration of exposure (30 min), DMSO and PG were better tolerated than the other cryoprotectants. Among nine cryoprotectant mixtures, the combination of 20% DMSO + 10% PG + 10% MeOH had the lowest toxicity after exposure for 10 min or 15 min. High percentages of morphologically intact embryos, 50.6 +/- 16.7% (mean +/- S.D.) and 77.8 +/- 15.5%, were achieved by the straw vitrifying method (20.5% DMSO + 15.5% acetamide + 10% PG, thawing at 43 degrees C and washing in 0.5 M sucrose solution for 5 min) and by the solid surface vitrification method (40% GLY, thawing at 22 degrees C and washing in 0.5 M sucrose solution for 5 min). After thawing, morphological changes in the degenerated embryos included shrunken yolks and ruptured chorions. Furthermore, thawed embryos that were morphologically intact did not consistently survive incubation. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study describes the formulation and physicochemical characterization of poly(acrylic acid) (PAA) organogels, designed as bioactive implants for improved treatment of infectious diseases of the oral cavity. Organogels were formulated containing a range of concentrations of PAA (3-10% w/w) and metronidazole (2 or 5% w/w, representing a model antimicrobial agent) in different nonaqueous solvents, namely, glycerol (Gly), polyethylene glycol (PEG 400), or propylene glycol (PG). Characterization of the organogels was performed using flow rheometry, compressional analysis, oscillatory rheometry, in vitro mucoadhesion, moisture uptake, and drug release, methods that provide information pertaining to the nonclinical and clinical use of these systems. Increasing the concentration of PAA significantly increased the consistency, compressibility, storage modulus, loss modulus, dynamic viscosity, mucoadhesion, and the rate of drug release. These observations may be accredited to enhanced molecular polymer entanglement. In addition, the choice of solvent directly affected the physicochemical parameters of the organogels, with noticeable differences observed between the three solvents examined. These differences were accredited to the nature of the interaction of PAA with each solvent and, importantly, the density of the resultant physical cross-links. Good correlation was observed between the viscoelastic properties and drug release, with the exception of glycerol-based formulations containing 5 and 10% w/w PAA. This disparity was due to excessive swelling during the dissolution analysis. Ideally, formulations should exhibit controlled drug release, high viscoelasticity, and mucoadhesion, but should flow under minimal stresses. Based on these criteria, PEG 400-based organogels composed of 5% or 10% w/w PAA exhibited suitable physicochemical properties and are suggested to be a potentially interesting strategy for use as bioactive implants designed for use in the oral cavity. © 2008 American Chemical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel 5-aminolevulinic acid (ALA)-containing microparticulate system was produced recently, based on incorporation of ALA into particles prepared from a suppository base that maintains drug stability during storage and melts at skin temperature to release its drug payload. The novel particulate system was applied to the skin of living animals, followed by study of protoporphyrin IX (PpIX) production. The effect of formulating the microparticles in different vehicles was investigated and also the phototoxicity of the PpIX produced using a model tumour. Particles formulated in propylene glycol gels (10% w/w ALA loading) generated the highest peak PpIX fluorescence levels in normal mouse skin. Peak PpIX levels induced in skin overlying subcutaneously implanted WiDr tumours were significantly lower than in normal skin for both the 10% w/w ALA microparticles alone and the 10% w/w ALA microparticles in propylene glycol gels during continuous 12 h applications. Tumours not treated with photodynamic therapy continued to grow over the 17 days of the anti-tumour study. However, those treated with 12 h applications of either the 10% w/w ALA microparticles alone or the 10% w/w ALA microparticles in propylene glycol gel followed by a single laser irradiation showed no growth. The gel formulation performed slightly better once again, reducing the tumour growth rate by approximately 105%, compared with the 89% reduction achieved using particles alone. Following the promising results obtained in this study, work is now going on to prepare particle-loaded gels under GMP conditions with the aim of initiating an exploratory clinical trial.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study examined the rheological/mucoadhesive properties of poly (acrylic acid) PAA organogels as platforms for drug delivery to the oral cavity. Organogels were prepared using PAA (3%, 5%, 10% w/w) dissolved in ethylene glycol (EG), propylene glycol (PG), 1,3-propylene glycol (1,3-PG), 1,5-propanediol (1,5-PD), polyethylene glycol 400 (PEG 400), or glycerol. All organogels exhibited pseudoplastic flow. The increase in storage (G') and loss (G '') moduli of organogels as a function of frequency was minimal, G '' was greater than G '' (at all frequencies), and the loss tangent <1, indicative of gel behavior. Organogels prepared using EG, PG, and 1,3-propanediol (1,3-PD) exhibited similar flow/viscoelastic properties. Enhanced rheological structuring was associated with organogels prepared using glycerol (in particular) and PEG 400 due to their interaction with adjacent carboxylic acid groups on each chain and on adjacent chains. All organogels (with the exception of 1,5-PD) exhibited greater network structure than aqueous PAA gels. Organogel mucoadhesion increased with polymer concentration. Greatest mucoadhesion was associated with glycerol-based formulations, whereas aqueous PAA gels exhibited the lowest mucoadhesion. The enhanced network structure and the excellent mucoadhesive properties of these organogels, both of which may be engineered through choice of polymer concentration/solvent type, may be clinically useful for the delivery of drugs to the oral cavity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives We aimed to describe administration of eight potentially harmful excipients of interest (EOI)-parabens, polysorbate 80, propylene glycol, benzoates, saccharin sodium, sorbitol, ethanol and benzalkonium chloride-to hospitalised neonates in Europe and to identify risk factors for exposure. Methods All medicines administered to neonates during 1 day with individual prescription and demographic data were registered in a web-based point prevalence study. Excipients were identified from the Summaries of Product Characteristics. Determinants of EOI administration (geographical region, gestational age (GA), active pharmaceutical ingredient, unit level and hospital teaching status) were identified using multivariable logistical regression analysis. Results Overall 89 neonatal units from 21 countries participated. Altogether 2095 prescriptions for 530 products administered to 726 neonates were recorded. EOI were found in 638 (31%) prescriptions and were administered to 456 (63%) neonates through a relatively small number of products (n=142; 27%). Parabens, found in 71 (13%) products administered to 313 (43%) neonates, were used most frequently. EOI administration varied by geographical region, GA and route of administration. Geographical region remained a significant determinant of the use of parabens, polysorbate 80, propylene glycol and saccharin sodium after adjustment for the potential covariates including anatomical therapeutic chemical class of the active ingredient. Conclusions European neonates receive a number of potentially harmful pharmaceutical excipients. Regional differences in EOI administration suggest that EOI-free products are available and provide the potential for substitution to avoid side effects of some excipients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’objectif de ce projet était de développer une formulation liquisolide (LS) de clozapine ayant des propriétés de dissolution améliorées et évaluer sa stabilité et ainsi que sa robustesse à la modification d’excipients. Le propylène glycol (PG), la cellulose microcrystalline (MCC) et le glycolate d’amidon sodique (SSG) ont été utilisés respectivement en tant que véhicule liquide non volatile, agent de masse et agent désintégrant pour la préparation de comprimés LS. Le dioxyde de silicium colloïdal (CSD), le silicate de calcium (CS) et l'aluminométasilicate de magnésium (MAMS) ont été choisis comme agents d’enrobage sec. La caractérisation complète des mélanges et des comprimés a été effectuée. Le taux de libération des comprimés LS était statistiquement supérieur à celui des comprimés réguliers. La surface spécifique des matériaux d’enrobage avait un effet sur les propriétés d’écoulement des mélanges et la taille des particules des matériaux d’enrobage a eu un effet sur la vitesse de dissolution. Le ratio support/enrobage du mélange de poudres (valeur de R) était un paramètre important pour les systèmes LS et devait être plus grand que 20 afin d’obtenir une meilleure libération du médicament. La formulation choisie a démontré une stabilité pour une période d’au moins 12 mois. La technique LS s’est avéré une approche efficace pour le développement de comprimés de clozapine ayant des propriétés de dissolution améliorées. Les comprimés oro-dispersibles (ODT) sont une formulation innovante qui permettent de surmonter les problèmes de déglutition et de fournir un début d'action plus rapide. Dans l’optique d’améliorer les propriétés de dissolution, un essai a été effectué pour étudier la technique LS dans la formulation des ODT de clozapine. Le PG, la MCC, le CSD et la crospovidone (CP) ont été utilisés respectivement en tant que véhicule liquide non volatile, agent de masse, agent d’enrobage sec et agent superdésintégrant pour la préparation de comprimés oro-dispersibles liquisolides (OD-LST). Le mannitol a été choisi comme agent de masse et agent édulcorant. La saccharine de sodium a été utilisée comme agent édulcorant. La caractérisation complète des comprimés a été effectuée. Le taux de libération des OD-LSTs était statisquement supérieur comparativement aux comprimés ODTs. La formulation choisie a démontré une stabilité pour une période d’au moins 6 mois. Il a été conclu que des ODT de clozapine peuvent être préparés avec succès en utilisant la technologie LS dans le but d’améliorer la désintégration et le taux de dissolution de la clozapine dans la cavité orale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Latex protein allergy is a serious problem faced by users of natural rubber latex products. This is severe in health care workers, who are constantly using latex products like examination gloves, surgical gloves etc. Out of the total proteins only a small fraction is extractable and only these proteins cause allergic reactions in sensitized people. Enzymic deproteinisation of latex and leaching and chlorination of latex products are the common methods used to reduce the severity of the problem.Enzyme deproteinisation is a cubersome process involving high cost and process loss.Physical properties of such films are poor. Leaching is a lengthy process and in leached latex products presence of extractable proteins is observed on further storing. Chlorination causes yellowing of latex products and reduction in tensile properties.In this context a more simple process of removal of extractable proteins from latex itself was investigated. This thesis reports the application of poly propylene glycol (PPG) to displace extractable proteins from natural latex. PPG is added to 60 % centrifuged natural latex to the extent of 0.2 % m/rn, subssequently diluted to 30 % dry rubber content and again concentrated to obtain a low protein latex.Dilution of concentrated latex and subsequent concentration lead to a total reduction in non - rubber solids in the concentrate, especially proteins and reduction in the ionic concentration in the aqueous phase of the latex. It has been reported that proteins in natural rubber / latex affect its behaviour in the vulcanisation process. Ionic concentration in the aqueous phase of latex influence the stability, viscosity and flow behaviour of natural latex. Hence, a detailed technological evaluation was carried out on this low protein latex. In this study, low protein latex was compared with single centrifuged latex ( the raw material to almost every latex product), double centrifuged latex ( because dilution and second concentration of latex is accompanied by protein removal to some extent and reduction in the ionic concentration of the aqueous phase of latex.). Studies were conducted on Sulphur cure in conventional and EV systems under conditions of post ~ cure and prevulcanisation of latex. Studies were conducted on radiation cure in latex stage. Extractable protein content in vulcanised low protein latex films are observed to be very low. lt is observed that this low protein latex is some what slower curing than single centrifuged latex, but faster than double centrifuged latex. Modulus of low protein latex films were slightly low. In general physical properties of vulcanised low protein latex films are only siightly lower than single centrifuged latex. Ageing properties of the low protein latex films were satisfactory. Viscosity and flow behaviour of low protein latex is much better than double centrifuged latex and almost comparable to single centrifuged latex. On observing that the physical properties and flow behaviour of low protein latex was satisfactory, it was used for the preparation of examination gloves and the gloves were evaluated. It is observed that the properties are conforming to the Indian Standard Specifications. It is thus observed that PPG treatment of natural latex is a simple process of preparing low protein latex. Extractable protein content in these films are very low.The physical properties of the films are comparable to ordinary centrifuged latex and better than conventionally deprotenized latex films. This latex can be used for the production of examination gloves.