974 resultados para Processing Element Array


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Digital chaotic behavior in an optically processing element is analyzed. It was obtained as the result of processing two fixed trains of bits. The process is performed with an optically programmable logic gate. Possible outputs, for some specific conditions of the circuit, are given. Digital chaotic behavior is obtained, by using a feedback configuration. Different ways to analyze a digital chaotic signal are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A half-adder and ñxll-adder desing using a new optical processing element is presented. The Optical Processing element is maded using fiber optic, optical couplers and non-linear optical device. This element allow programmability of fourteen difference pair of logical function of two inputs in two outputs. Two optical control signáis of non-binary logic made the choice of the logical function pair obtain in the outputs. By the appropiate selection of the power levels of the optical control signáis, we can configúrate a half-adder and with an small modification a full-adder. Also, a ripple carry adder desing is presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The solutions to cope with new challenges that societies have to face nowadays involve providing smarter daily systems. To achieve this, technology has to evolve and leverage physical systems automatic interactions, with less human intervention. Technological paradigms like Internet of Things (IoT) and Cyber-Physical Systems (CPS) are providing reference models, architectures, approaches and tools that are to support cross-domain solutions. Thus, CPS based solutions will be applied in different application domains like e-Health, Smart Grid, Smart Transportation and so on, to assure the expected response from a complex system that relies on the smooth interaction and cooperation of diverse networked physical systems. The Wireless Sensors Networks (WSN) are a well-known wireless technology that are part of large CPS. The WSN aims at monitoring a physical system, object, (e.g., the environmental condition of a cargo container), and relaying data to the targeted processing element. The WSN communication reliability, as well as a restrained energy consumption, are expected features in a WSN. This paper shows the results obtained in a real WSN deployment, based on SunSPOT nodes, which carries out a fuzzy based control strategy to improve energy consumption while keeping communication reliability and computational resources usage among boundaries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An effective aperture approach is used as a tool for analysis and parameter optimization of mostly known ultrasound imaging systems - phased array systems, compounding systems and synthetic aperture imaging systems. Both characteristics of an imaging system, the effective aperture function and the corresponding two-way radiation pattern, provide information about two of the most important parameters of images produced by an ultrasound system - lateral resolution and contrast. Therefore, in the design, optimization of the effective aperture function leads to optimal choice of such parameters of an imaging systems that influence on lateral resolution and contrast of images produced by this imaging system. It is shown that the effective aperture approach can be used for optimization of a sparse synthetic transmit aperture (STA) imaging system. A new two-stage algorithm is proposed for optimization of both the positions of the transmitted elements and the weights of the receive elements. The proposed system employs a 64-element array with only four active elements used during transmit. The numerical results show that Hamming apodization gives the best compromise between the contrast of images and the lateral resolution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is shown that the direction-of-arrival (DoA) information carried by an incident electromagnetic (EM) wave can be encoded into the evanescent near field of an electrically small resonance antenna array with a spatial rate higher than that of the incident field oscillation rate in free space. Phase conjugation of the received signal leads to the retrodirection of the near field in the antenna array environment, which in turn generates a retrodirected far-field beam toward the original DoA. This EM phenomenon enables electrically small retrodirective antenna arrays with superdirective, angular super-resolution, auto-pointing properties for an arbitrary DoA. A theoretical explanation of the phenomenon based on first principal observations is given and full-wave simulations demonstrate a realizability route for the proposed retrodirective terminal that is comprised of resonance dipole antenna elements. Specifically, it is shown that a three-element disk-loaded retrodirective dipole array with 0.15\lambda spacings can achieve a 3.4-dBi maximal gain, 3-dBi front-to-back ratio, and 13% return loss fractional bandwidth (at the 10-dB level). Then, it is demonstrated that the radiation gain of a three-element array can be improved to approximately 6 dBi at the expense of the return loss fractional bandwidth reduction (2%).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper addresses the problem of degradations in adaptive digital beam-forming (DBF) systems caused by mutual coupling between array elements. The focus is on compact arrays with reduced element spacing and, hence, strongly coupled elements. Deviations in the radiation patterns of coupled and (theoretically) uncoupled elements can be compensated for by weight-adjustments in DBF, but SNR degradation due to impedance mismatches cannot be compensated for via signal processing techniques. It is shown that this problem can be overcome via the implementation of a RF-decoupling-network. SNR enhancement is achieved at the cost of a reduced frequency bandwidth and an increased sensitivity to dissipative losses in the antenna and matching network structure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper explores the use of subarrays as array elements. Benefits of such a concept include improved gain in any direction without significantly increasing the overall size of the array and enhanced pattern control. The architecture for an array of subarrays will be discussed via a systems approach. Individual system designs are explored in further details and proof of principle is illustrated through a manufactured examples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The signal processing techniques developed for the diagnostics of mechanical components operating in stationary conditions are often not applicable or are affected by a loss of effectiveness when applied to signals measured in transient conditions. In this chapter, an original signal processing tool is developed exploiting some data-adaptive techniques such as Empirical Mode Decomposition, Minimum Entropy Deconvolution and the analytical approach of the Hilbert transform. The tool has been developed to detect localized faults on bearings of traction systems of high speed trains and it is more effective to detect a fault in non-stationary conditions than signal processing tools based on envelope analysis or spectral kurtosis, which represent until now the landmark for bearings diagnostics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A two-dimensional model has been developed based on the experimental results of stainless steel remelting with the laminar plasma technology to investigate the transient thermo-physical characteristics of the melt pool liquids. The influence of the temperature field, temperature gradient, solidification rate and cooling rate on the processing conditions has been investigated numerically. Not only have the appropriate processing conditions been determined according to the calculations, but also they have been predicted with a criterion established based on the concept of equivalent temperature area density (ETAD) that is actually a function of the processing parameters and material properties. The comparison between the resulting conditions shows that the ETAD method can better predict the optimum condition.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Discrete element modeling is being used increasingly to simulate flow in fluidized beds. These models require complex measurement techniques to provide validation for the approximations inherent in the model. This paper introduces the idea of modeling the experiment to ensure that the validation is accurate. Specifically, a 3D, cylindrical gas-fluidized bed was simulated using a discrete element model (DEM) for particle motion coupled with computational fluid dynamics (CFD) to describe the flow of gas. The results for time-averaged, axial velocity during bubbling fluidization were compared with those from magnetic resonance (MR) experiments made on the bed. The DEM-CFD data were postprocessed with various methods to produce time-averaged velocity maps for comparison with the MR results, including a method which closely matched the pulse sequence and data processing procedure used in the MR experiments. The DEM-CFD results processed with the MR-type time-averaging closely matched experimental MR results, validating the DEM-CFD model. Analysis of different averaging procedures confirmed that MR time-averages of dynamic systems correspond to particle-weighted averaging, rather than frame-weighted averaging, and also demonstrated that the use of Gaussian slices in MR imaging of dynamic systems is valid. © 2013 American Chemical Society.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Huelse, M, Barr, D R W, Dudek, P: Cellular Automata and non-static image processing for embodied robot systems on a massively parallel processor array. In: Adamatzky, A et al. (eds) AUTOMATA 2008, Theory and Applications of Cellular Automata. Luniver Press, 2008, pp. 504-510. Sponsorship: EPSRC

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dynamic power consumption is very dependent on interconnect, so clever mapping of digital signal processing algorithms to parallelised realisations with data locality is vital. This is a particular problem for fast algorithm implementations where typically, designers will have sacrificed circuit structure for efficiency in software implementation. This study outlines an approach for reducing the dynamic power consumption of a class of fast algorithms by minimising the index space separation; this allows the generation of field programmable gate array (FPGA) implementations with reduced power consumption. It is shown how a 50% reduction in relative index space separation results in a measured power gain of 36 and 37% over a Cooley-Tukey Fast Fourier Transform (FFT)-based solution for both actual power measurements for a Xilinx Virtex-II FPGA implementation and circuit measurements for a Xilinx Virtex-5 implementation. The authors show the generality of the approach by applying it to a number of other fast algorithms namely the discrete cosine, the discrete Hartley and the Walsh-Hadamard transforms.