959 resultados para Probabilistic graphical model


Relevância:

90.00% 90.00%

Publicador:

Resumo:

One of the most promising areas in which probabilistic graphical models have shown an incipient activity is the field of heuristic optimization and, in particular, in Estimation of Distribution Algorithms. Due to their inherent parallelism, different research lines have been studied trying to improve Estimation of Distribution Algorithms from the point of view of execution time and/or accuracy. Among these proposals, we focus on the so-called distributed or island-based models. This approach defines several islands (algorithms instances) running independently and exchanging information with a given frequency. The information sent by the islands can be either a set of individuals or a probabilistic model. This paper presents a comparative study for a distributed univariate Estimation of Distribution Algorithm and a multivariate version, paying special attention to the comparison of two alternative methods for exchanging information, over a wide set of parameters and problems ? the standard benchmark developed for the IEEE Workshop on Evolutionary Algorithms and other Metaheuristics for Continuous Optimization Problems of the ISDA 2009 Conference. Several analyses from different points of view have been conducted to analyze both the influence of the parameters and the relationships between them including a characterization of the configurations according to their behavior on the proposed benchmark.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper proposes a novel framework of incorporating protein-protein interactions (PPI) ontology knowledge into PPI extraction from biomedical literature in order to address the emerging challenges of deep natural language understanding. It is built upon the existing work on relation extraction using the Hidden Vector State (HVS) model. The HVS model belongs to the category of statistical learning methods. It can be trained directly from un-annotated data in a constrained way whilst at the same time being able to capture the underlying named entity relationships. However, it is difficult to incorporate background knowledge or non-local information into the HVS model. This paper proposes to represent the HVS model as a conditionally trained undirected graphical model in which non-local features derived from PPI ontology through inference would be easily incorporated. The seamless fusion of ontology inference with statistical learning produces a new paradigm to information extraction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a probabilistic, online, depth map fusion framework, whose generative model for the sensor measurement process accurately incorporates both long-range visibility constraints and a spatially varying, probabilistic outlier model. In addition, we propose an inference algorithm that updates the state variables of this model in linear time each frame. Our detailed evaluation compares our approach against several others, demonstrating and explaining the improvements that this model offers, as well as highlighting a problem with all current methods: systemic bias. © 2012 Springer-Verlag.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bayesian methods offer a flexible and convenient probabilistic learning framework to extract interpretable knowledge from complex and structured data. Such methods can characterize dependencies among multiple levels of hidden variables and share statistical strength across heterogeneous sources. In the first part of this dissertation, we develop two dependent variational inference methods for full posterior approximation in non-conjugate Bayesian models through hierarchical mixture- and copula-based variational proposals, respectively. The proposed methods move beyond the widely used factorized approximation to the posterior and provide generic applicability to a broad class of probabilistic models with minimal model-specific derivations. In the second part of this dissertation, we design probabilistic graphical models to accommodate multimodal data, describe dynamical behaviors and account for task heterogeneity. In particular, the sparse latent factor model is able to reveal common low-dimensional structures from high-dimensional data. We demonstrate the effectiveness of the proposed statistical learning methods on both synthetic and real-world data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We propose three research problems to explore the relations between trust and security in the setting of distributed computation. In the first problem, we study trust-based adversary detection in distributed consensus computation. The adversaries we consider behave arbitrarily disobeying the consensus protocol. We propose a trust-based consensus algorithm with local and global trust evaluations. The algorithm can be abstracted using a two-layer structure with the top layer running a trust-based consensus algorithm and the bottom layer as a subroutine executing a global trust update scheme. We utilize a set of pre-trusted nodes, headers, to propagate local trust opinions throughout the network. This two-layer framework is flexible in that it can be easily extensible to contain more complicated decision rules, and global trust schemes. The first problem assumes that normal nodes are homogeneous, i.e. it is guaranteed that a normal node always behaves as it is programmed. In the second and third problems however, we assume that nodes are heterogeneous, i.e, given a task, the probability that a node generates a correct answer varies from node to node. The adversaries considered in these two problems are workers from the open crowd who are either investing little efforts in the tasks assigned to them or intentionally give wrong answers to questions. In the second part of the thesis, we consider a typical crowdsourcing task that aggregates input from multiple workers as a problem in information fusion. To cope with the issue of noisy and sometimes malicious input from workers, trust is used to model workers' expertise. In a multi-domain knowledge learning task, however, using scalar-valued trust to model a worker's performance is not sufficient to reflect the worker's trustworthiness in each of the domains. To address this issue, we propose a probabilistic model to jointly infer multi-dimensional trust of workers, multi-domain properties of questions, and true labels of questions. Our model is very flexible and extensible to incorporate metadata associated with questions. To show that, we further propose two extended models, one of which handles input tasks with real-valued features and the other handles tasks with text features by incorporating topic models. Our models can effectively recover trust vectors of workers, which can be very useful in task assignment adaptive to workers' trust in the future. These results can be applied for fusion of information from multiple data sources like sensors, human input, machine learning results, or a hybrid of them. In the second subproblem, we address crowdsourcing with adversaries under logical constraints. We observe that questions are often not independent in real life applications. Instead, there are logical relations between them. Similarly, workers that provide answers are not independent of each other either. Answers given by workers with similar attributes tend to be correlated. Therefore, we propose a novel unified graphical model consisting of two layers. The top layer encodes domain knowledge which allows users to express logical relations using first-order logic rules and the bottom layer encodes a traditional crowdsourcing graphical model. Our model can be seen as a generalized probabilistic soft logic framework that encodes both logical relations and probabilistic dependencies. To solve the collective inference problem efficiently, we have devised a scalable joint inference algorithm based on the alternating direction method of multipliers. The third part of the thesis considers the problem of optimal assignment under budget constraints when workers are unreliable and sometimes malicious. In a real crowdsourcing market, each answer obtained from a worker incurs cost. The cost is associated with both the level of trustworthiness of workers and the difficulty of tasks. Typically, access to expert-level (more trustworthy) workers is more expensive than to average crowd and completion of a challenging task is more costly than a click-away question. In this problem, we address the problem of optimal assignment of heterogeneous tasks to workers of varying trust levels with budget constraints. Specifically, we design a trust-aware task allocation algorithm that takes as inputs the estimated trust of workers and pre-set budget, and outputs the optimal assignment of tasks to workers. We derive the bound of total error probability that relates to budget, trustworthiness of crowds, and costs of obtaining labels from crowds naturally. Higher budget, more trustworthy crowds, and less costly jobs result in a lower theoretical bound. Our allocation scheme does not depend on the specific design of the trust evaluation component. Therefore, it can be combined with generic trust evaluation algorithms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent years, radars have been used in many applications such as precision agriculture and advanced driver assistant systems. Optimal techniques for the estimation of the number of targets and of their coordinates require solving multidimensional optimization problems entailing huge computational efforts. This has motivated the development of sub-optimal estimation techniques able to achieve good accuracy at a manageable computational cost. Another technical issue in advanced driver assistant systems is the tracking of multiple targets. Even if various filtering techniques have been developed, new efficient and robust algorithms for target tracking can be devised exploiting a probabilistic approach, based on the use of the factor graph and the sum-product algorithm. The two contributions provided by this dissertation are the investigation of the filtering and smoothing problems from a factor graph perspective and the development of efficient algorithms for two and three-dimensional radar imaging. Concerning the first contribution, a new factor graph for filtering is derived and the sum-product rule is applied to this graphical model; this allows to interpret known algorithms and to develop new filtering techniques. Then, a general method, based on graphical modelling, is proposed to derive filtering algorithms that involve a network of interconnected Bayesian filters. Finally, the proposed graphical approach is exploited to devise a new smoothing algorithm. Numerical results for dynamic systems evidence that our algorithms can achieve a better complexity-accuracy tradeoff and tracking capability than other techniques in the literature. Regarding radar imaging, various algorithms are developed for frequency modulated continuous wave radars; these algorithms rely on novel and efficient methods for the detection and estimation of multiple superimposed tones in noise. The accuracy achieved in the presence of multiple closely spaced targets is assessed on the basis of both synthetically generated data and of the measurements acquired through two commercial multiple-input multiple-output radars.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Old timber structures may show significant variation in the cross section geometry along the same element, as a result of both construction methods and deterioration. As consequence, the definition of the geometric parameters in situ may be both time consuming and costly. This work presents the results of inspections carried out in different timber structures. Based on the obtained results, different simplified geometric models are proposed in order to efficiently model the geometry variations found. Probabilistic modelling techniques are also used to define safety parameters of existing timber structures, when subjected to dead and live loads, namely self-weight and wind actions. The parameters of the models have been defined as probabilistic variables, and safety of a selected case study was assessed using the Monte Carlo simulation technique. Assuming a target reliability index, a model was defined for both the residual cross section and the time dependent deterioration evolution. As a consequence, it was possible to compute probabilities of failure and reliability indices, as well as, time evolution deterioration curves for this structure. The results obtained provide a proposal for definition of the cross section geometric parameters of existing timber structures with different levels of decay, using a simplified probabilistic geometry model and considering a remaining capacity factor for the decayed areas. This model can be used for assessing the safety of the structure at present and for predicting future performance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In a series of three experiments, participants made inferences about which one of a pair of two objects scored higher on a criterion. The first experiment was designed to contrast the prediction of Probabilistic Mental Model theory (Gigerenzer, Hoffrage, & Kleinbölting, 1991) concerning sampling procedure with the hard-easy effect. The experiment failed to support the theory's prediction that a particular pair of randomly sampled item sets would differ in percentage correct; but the observation that German participants performed practically as well on comparisons between U.S. cities (many of which they did not even recognize) than on comparisons between German cities (about which they knew much more) ultimately led to the formulation of the recognition heuristic. Experiment 2 was a second, this time successful, attempt to unconfound item difficulty and sampling procedure. In Experiment 3, participants' knowledge and recognition of each city was elicited, and how often this could be used to make an inference was manipulated. Choices were consistent with the recognition heuristic in about 80% of the cases when it discriminated and people had no additional knowledge about the recognized city (and in about 90% when they had such knowledge). The frequency with which the heuristic could be used affected the percentage correct, mean confidence, and overconfidence as predicted. The size of the reference class, which was also manipulated, modified these effects in meaningful and theoretically important ways.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes a mathematical and graphical model for face aging. It considers the possibility of predicting the aging process by offering an initial quantification of this process as it applies to the face. It is concerned with physical measurements and a general law of time dependence. After measuring and normalizing a photograph of a person, one could predict, with a known amount of error, the appearance of that person at a different age. The technique described has served its purpose successfully, with a representative amount of patient data behaving sufficiently near the general aging curve of each parameter. That model uses a warping technique to emulate the aging changes on the face of women. Frequently the warping methods are based on the interpolation between images or general mathematical functions to calculate the pixel attributes. The implemented process considers the age features of selected parts of a face such as the face outline and the shape of the lips. These age features were obtained by measuring the facial regions of women that have been photographed throughout their lives. The present work is first concerned with discussing a methodology to define the aging parameters that can be measured, and second with representing the age effects graphically.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Object detection is a fundamental task of computer vision that is utilized as a core part in a number of industrial and scientific applications, for example, in robotics, where objects need to be correctly detected and localized prior to being grasped and manipulated. Existing object detectors vary in (i) the amount of supervision they need for training, (ii) the type of a learning method adopted (generative or discriminative) and (iii) the amount of spatial information used in the object model (model-free, using no spatial information in the object model, or model-based, with the explicit spatial model of an object). Although some existing methods report good performance in the detection of certain objects, the results tend to be application specific and no universal method has been found that clearly outperforms all others in all areas. This work proposes a novel generative part-based object detector. The generative learning procedure of the developed method allows learning from positive examples only. The detector is based on finding semantically meaningful parts of the object (i.e. a part detector) that can provide additional information to object location, for example, pose. The object class model, i.e. the appearance of the object parts and their spatial variance, constellation, is explicitly modelled in a fully probabilistic manner. The appearance is based on bio-inspired complex-valued Gabor features that are transformed to part probabilities by an unsupervised Gaussian Mixture Model (GMM). The proposed novel randomized GMM enables learning from only a few training examples. The probabilistic spatial model of the part configurations is constructed with a mixture of 2D Gaussians. The appearance of the parts of the object is learned in an object canonical space that removes geometric variations from the part appearance model. Robustness to pose variations is achieved by object pose quantization, which is more efficient than previously used scale and orientation shifts in the Gabor feature space. Performance of the resulting generative object detector is characterized by high recall with low precision, i.e. the generative detector produces large number of false positive detections. Thus a discriminative classifier is used to prune false positive candidate detections produced by the generative detector improving its precision while keeping high recall. Using only a small number of positive examples, the developed object detector performs comparably to state-of-the-art discriminative methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Un facteur d’incertitude de 10 est utilisé par défaut lors de l’élaboration des valeurs toxicologiques de référence en santé environnementale, afin de tenir compte de la variabilité interindividuelle dans la population. La composante toxicocinétique de cette variabilité correspond à racine de 10, soit 3,16. Sa validité a auparavant été étudiée sur la base de données pharmaceutiques colligées auprès de diverses populations (adultes, enfants, aînés). Ainsi, il est possible de comparer la valeur de 3,16 au Facteur d’ajustement pour la cinétique humaine (FACH), qui constitue le rapport entre un centile élevé (ex. : 95e) de la distribution de la dose interne dans des sous-groupes présumés sensibles et sa médiane chez l’adulte, ou encore à l’intérieur d’une population générale. Toutefois, les données expérimentales humaines sur les polluants environnementaux sont rares. De plus, ces substances ont généralement des propriétés sensiblement différentes de celles des médicaments. Il est donc difficile de valider, pour les polluants, les estimations faites à partir des données sur les médicaments. Pour résoudre ce problème, la modélisation toxicocinétique à base physiologique (TCBP) a été utilisée pour simuler la variabilité interindividuelle des doses internes lors de l’exposition aux polluants. Cependant, les études réalisées à ce jour n’ont que peu permis d’évaluer l’impact des conditions d’exposition (c.-à-d. voie, durée, intensité), des propriétés physico/biochimiques des polluants, et des caractéristiques de la population exposée sur la valeur du FACH et donc la validité de la valeur par défaut de 3,16. Les travaux de la présente thèse visent à combler ces lacunes. À l’aide de simulations de Monte-Carlo, un modèle TCBP a d’abord été utilisé pour simuler la variabilité interindividuelle des doses internes (c.-à-d. chez les adultes, ainés, enfants, femmes enceintes) de contaminants de l’eau lors d’une exposition par voie orale, respiratoire, ou cutanée. Dans un deuxième temps, un tel modèle a été utilisé pour simuler cette variabilité lors de l’inhalation de contaminants à intensité et durée variables. Ensuite, un algorithme toxicocinétique à l’équilibre probabiliste a été utilisé pour estimer la variabilité interindividuelle des doses internes lors d’expositions chroniques à des contaminants hypothétiques aux propriétés physico/biochimiques variables. Ainsi, les propriétés de volatilité, de fraction métabolisée, de voie métabolique empruntée ainsi que de biodisponibilité orale ont fait l’objet d’analyses spécifiques. Finalement, l’impact du référent considéré et des caractéristiques démographiques sur la valeur du FACH lors de l’inhalation chronique a été évalué, en ayant recours également à un algorithme toxicocinétique à l’équilibre. Les distributions de doses internes générées dans les divers scénarios élaborés ont permis de calculer dans chaque cas le FACH selon l’approche décrite plus haut. Cette étude a mis en lumière les divers déterminants de la sensibilité toxicocinétique selon le sous-groupe et la mesure de dose interne considérée. Elle a permis de caractériser les déterminants du FACH et donc les cas où ce dernier dépasse la valeur par défaut de 3,16 (jusqu’à 28,3), observés presqu’uniquement chez les nouveau-nés et en fonction de la substance mère. Cette thèse contribue à améliorer les connaissances dans le domaine de l’analyse du risque toxicologique en caractérisant le FACH selon diverses considérations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Undirected graphical models are widely used in statistics, physics and machine vision. However Bayesian parameter estimation for undirected models is extremely challenging, since evaluation of the posterior typically involves the calculation of an intractable normalising constant. This problem has received much attention, but very little of this has focussed on the important practical case where the data consists of noisy or incomplete observations of the underlying hidden structure. This paper specifically addresses this problem, comparing two alternative methodologies. In the first of these approaches particle Markov chain Monte Carlo (Andrieu et al., 2010) is used to efficiently explore the parameter space, combined with the exchange algorithm (Murray et al., 2006) for avoiding the calculation of the intractable normalising constant (a proof showing that this combination targets the correct distribution in found in a supplementary appendix online). This approach is compared with approximate Bayesian computation (Pritchard et al., 1999). Applications to estimating the parameters of Ising models and exponential random graphs from noisy data are presented. Each algorithm used in the paper targets an approximation to the true posterior due to the use of MCMC to simulate from the latent graphical model, in lieu of being able to do this exactly in general. The supplementary appendix also describes the nature of the resulting approximation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

What is the relationship between magnitude judgments relying on directly available characteristics versus probabilistic cues? Question frame was manipulated in a comparative judgment task previously assumed to involve inference across a probabilistic mental model (e.g., “which city is largest” – the “larger” question – versus “which city is smallest” – the “smaller” question). Participants identified either the largest or smallest city (Experiments 1a, 2) or the richest or poorest person (Experiment 1b) in a three-alternative forced choice (3-AFC) task (Experiment 1) or 2-AFC task (Experiment 2). Response times revealed an interaction between question frame and the number of options recognized. When asked the smaller question, response times were shorter when none of the options were recognized. The opposite pattern was found when asked the larger question: response time was shorter when all options were recognized. These task-stimuli congruity results in judgment under uncertainty are consistent with, and predicted by, theories of magnitude comparison which make use of deductive inferences from declarative knowledge.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Robust and accurate identification of intervertebral discs from low resolution, sparse MRI scans is essential for the automated scan planning of the MRI spine scan. This paper presents a graphical model based solution for the detection of both the positions and orientations of intervertebral discs from low resolution, sparse MRI scans. Compared with the existing graphical model based methods, the proposed method does not need a training process using training data and it also has the capability to automatically determine the number of vertebrae visible in the image. Experiments on 25 low resolution, sparse spine MRI data sets verified its performance.