901 resultados para Probabilistic cellular automata


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urban growth models have been used for decades to forecast urban development in metropolitan areas. Since the 1990s cellular automata, with simple computational rules and an explicitly spatial architecture, have been heavily utilized in this endeavor. One such cellular-automata-based model, SLEUTH, has been successfully applied around the world to better understand and forecast not only urban growth but also other forms of land-use and land-cover change, but like other models must be fed important information about which particular lands in the modeled area are available for development. Some of these lands are in categories for the purpose of excluding urban growth that are difficult to quantify since their function is dictated by policy. One such category includes voluntary differential assessment programs, whereby farmers agree not to develop their lands in exchange for significant tax breaks. Since they are voluntary, today’s excluded lands may be available for development at some point in the future. Mapping the shifting mosaic of parcels that are enrolled in such programs allows this information to be used in modeling and forecasting. In this study, we added information about California’s Williamson Act into SLEUTH’s excluded layer for Tulare County. Assumptions about the voluntary differential assessments were used to create a sophisticated excluded layer that was fed into SLEUTH’s urban growth forecasting routine. The results demonstrate not only a successful execution of this method but also yielded high goodness-of-fit metrics for both the calibration of enrollment termination as well as the urban growth modeling itself.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are several ways of controlling the propagation of a contagious disease. For instance, to reduce the spreading of an airborne infection, individuals can be encouraged to remain in their homes and/or to wear face masks outside their domiciles. However, when a limited amount of masks is available, who should use them: the susceptible subjects, the infective persons or both populations? Here we employ susceptible-infective-recovered (SIR) models described in terms of ordinary differential equations and probabilistic cellular automata in order to investigate how the deletion of links in the random complex network representing the social contacts among individuals affects the dynamics of a contagious disease. The inspiration for this study comes from recent discussions about the impact of measures usually recommended by health public organizations for preventing the propagation of the swine influenza A (H1N1) virus. Our answer to this question can be valid for other eco-epidemiological systems. (C) 2010 Elsevier BM. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In epidemiology, the basic reproduction number R-0 is usually defined as the average number of new infections caused by a single infective individual introduced into a completely susceptible population. According to this definition. R-0 is related to the initial stage of the spreading of a contagious disease. However, from epidemiological models based on ordinary differential equations (ODE), R-0 is commonly derived from a linear stability analysis and interpreted as a bifurcation parameter: typically, when R-0 >1, the contagious disease tends to persist in the population because the endemic stationary solution is asymptotically stable: when R-0 <1, the corresponding pathogen tends to naturally disappear because the disease-free stationary solution is asymptotically stable. Here we intend to answer the following question: Do these two different approaches for calculating R-0 give the same numerical values? In other words, is the number of secondary infections caused by a unique sick individual equal to the threshold obtained from stability analysis of steady states of ODE? For finding the answer, we use a susceptibleinfective-recovered (SIR) model described in terms of ODE and also in terms of a probabilistic cellular automaton (PCA), where each individual (corresponding to a cell of the PCA lattice) is connected to others by a random network favoring local contacts. The values of R-0 obtained from both approaches are compared, showing good agreement. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of finite automata minimization is important for software and hardware designing. Different types of automata are used for modeling systems or machines with finite number of states. The limitation of number of states gives savings in resources and time. In this article we show specific type of probabilistic automata: the reactive probabilistic finite automata with accepting states (in brief the reactive probabilistic automata), and definitions of languages accepted by it. We present definition of bisimulation relation for automata's states and define relation of indistinguishableness of automata states, on base of which we could effectuate automata minimization. Next we present detailed algorithm reactive probabilistic automata’s minimization with determination of its complexity and analyse example solved with help of this algorithm.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A susceptible-infective-recovered (SIR) epidemiological model based on probabilistic cellular automaton (PCA) is employed for simulating the temporal evolution of the registered cases of chickenpox in Arizona, USA, between 1994 and 2004. At each time step, every individual is in one of the states S, I, or R. The parameters of this model are the probabilities of each individual (each cell forming the PCA lattice ) passing from a state to another state. Here, the values of these probabilities are identified by using a genetic algorithm. If nonrealistic values are allowed to the parameters, the predictions present better agreement with the historical series than if they are forced to present realistic values. A discussion about how the size of the PCA lattice affects the quality of the model predictions is presented. Copyright (C) 2009 L. H. A. Monteiro et al.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Susceptible-infective-removed (SIR) models are commonly used for representing the spread of contagious diseases. A SIR model can be described in terms of a probabilistic cellular automaton (PCA), where each individual (corresponding to a cell of the PCA lattice) is connected to others by a random network favoring local contacts. Here, this framework is employed for investigating the consequences of applying vaccine against the propagation of a contagious infection, by considering vaccination as a game, in the sense of game theory. In this game, the players are the government and the susceptible newborns. In order to maximize their own payoffs, the government attempts to reduce the costs for combating the epidemic, and the newborns may be vaccinated only when infective individuals are found in their neighborhoods and/or the government promotes an immunization program. As a consequence of these strategies supported by cost-benefit analysis and perceived risk, numerical simulations show that the disease is not fully eliminated and the government implements quasi-periodic vaccination campaigns. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigate the internal dynamics of two cellular automaton models with heterogeneous strength fields and differing nearest neighbour laws. One model is a crack-like automaton, transferring ail stress from a rupture zone to the surroundings. The other automaton is a partial stress drop automaton, transferring only a fraction of the stress within a rupture zone to the surroundings. To study evolution of stress, the mean spectral density. f(k(r)) of a stress deficit held is: examined prior to, and immediately following ruptures in both models. Both models display a power-law relationship between f(k(r)) and spatial wavenumber (k(r)) of the form f(k(r)) similar tok(r)(-beta). In the crack model, the evolution of stress deficit is consistent with cyclic approach to, and retreat from a critical state in which large events occur. The approach to criticality is driven by tectonic loading. Short-range stress transfer in the model does not affect the approach to criticality of broad regions in the model. The evolution of stress deficit in the partial stress drop model is consistent with small fluctuations about a mean state of high stress, behaviour indicative of a self-organised critical system. Despite statistics similar to natural earthquakes these simplified models lack a physical basis. physically motivated models of earthquakes also display dynamical complexity similar to that of a critical point system. Studies of dynamical complexity in physical models of earthquakes may lead to advancement towards a physical theory for earthquakes.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider the time evolution of an exactly solvable cellular automaton with random initial conditions both in the large-scale hydrodynamic limit and on the microscopic level. This model is a version of the totally asymmetric simple exclusion process with sublattice parallel update and thus may serve as a model for studying traffic jams in systems of self-driven particles. We study the emergence of shocks from the microscopic dynamics of the model. In particular, we introduce shock measures whose time evolution we can compute explicitly, both in the thermodynamic limit and for open boundaries where a boundary-induced phase transition driven by the motion of a shock occurs. The motion of the shock, which results from the collective dynamics of the exclusion particles, is a random walk with an internal degree of freedom that determines the jump direction. This type of hopping dynamics is reminiscent of some transport phenomena in biological systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A statistical fractal automaton model is described which displays two modes of dynamical behaviour. The first mode, termed recurrent criticality, is characterised by quasi-periodic, characteristic events that are preceded by accelerating precursory activity. The second mode is more reminiscent of SOC automata in which large events are not preceded by an acceleration in activity. Extending upon previous studies of statistical fractal automata, a redistribution law is introduced which incorporates two model parameters: a dissipation factor and a stress transfer ratio. Results from a parameter space investigation indicate that a straight line through parameter space marks a transition from recurrent criticality to unpredictable dynamics. Recurrent criticality only occurs for models within one corner of the parameter space. The location of the transition displays a simple dependence upon the fractal correlation dimension of the cell strength distribution. Analysis of stress field evolution indicates that recurrent criticality occurs in models with significant long-range stress correlations. A constant rate of activity is associated with a decorrelated stress field.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The recurrence interval statistics for regional seismicity follows a universal distribution function, independent of the tectonic setting or average rate of activity (Corral, 2004). The universal function is a modified gamma distribution with power-law scaling of recurrence intervals shorter than the average rate of activity and exponential decay for larger intervals. We employ the method of Corral (2004) to examine the recurrence statistics of a range of cellular automaton earthquake models. The majority of models has an exponential distribution of recurrence intervals, the same as that of a Poisson process. One model, the Olami-Feder-Christensen automaton, has recurrence statistics consistent with regional seismicity for a certain range of the conservation parameter of that model. For conservation parameters in this range, the event size statistics are also consistent with regional seismicity. Models whose dynamics are dominated by characteristic earthquakes do not appear to display universality of recurrence statistics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Identification, prediction, and control of a system are engineering subjects, regardless of the nature of the system. Here, the temporal evolution of the number of individuals with dengue fever weekly recorded in the city of Rio de Janeiro, Brazil, during 2007, is used to identify SIS (susceptible-infective-susceptible) and SIR (susceptible-infective-removed) models formulated in terms of cellular automaton (CA). In the identification process, a genetic algorithm (GA) is utilized to find the probabilities of the state transition S -> I able of reproducing in the CA lattice the historical series of 2007. These probabilities depend on the number of infective neighbors. Time-varying and non-time-varying probabilities, three different sizes of lattices, and two kinds of coupling topology among the cells are taken into consideration. Then, these epidemiological models built by combining CA and GA are employed for predicting the cases of sick persons in 2008. Such models can be useful for forecasting and controlling the spreading of this infectious disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Urbanization and the ability to manage for a sustainable future present numerous challenges for geographers and planners in metropolitan regions. Remotely sensed data are inherently suited to provide information on urban land cover characteristics, and their change over time, at various spatial and temporal scales. Data models for establishing the range of urban land cover types and their biophysical composition (vegetation, soil, and impervious surfaces) are integrated to provide a hierarchical approach to classifying land cover within urban environments. These data also provide an essential component for current simulation models of urban growth patterns, as both calibration and validation data. The first stages of the approach have been applied to examine urban growth between 1988 and 1995 for a rapidly developing area in southeast Queensland, Australia. Landsat Thematic Mapper image data provided accurate (83% adjusted overall accuracy) classification of broad land cover types and their change over time. The combination of commonly available remotely sensed data, image processing methods, and emerging urban growth models highlights an important application for current and next generation moderate spatial resolution image data in studies of urban environments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Simulations provide a powerful means to help gain the understanding of crustal fault system physics required to progress towards the goal of earthquake forecasting. Cellular Automata are efficient enough to probe system dynamics but their simplifications render interpretations questionable. In contrast, sophisticated elasto-dynamic models yield more convincing results but are too computationally demanding to explore phase space. To help bridge this gap, we develop a simple 2D elastodynamic model of parallel fault systems. The model is discretised onto a triangular lattice and faults are specified as split nodes along horizontal rows in the lattice. A simple numerical approach is presented for calculating the forces at medium and split nodes such that general nonlinear frictional constitutive relations can be modeled along faults. Single and multi-fault simulation examples are presented using a nonlinear frictional relation that is slip and slip-rate dependent in order to illustrate the model.