986 resultados para Primary Rat Hepatocytes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The estrogen-dependent and tissue-specific regulation of the Xenopus laevis vitellogenin gene B1 promoter has been studied by lipid-mediated DNA transfer into Xenopus hepatocytes in primary culture. Hepatocytes achieve an efficient hormonal control of this promoter through a functional interaction between the estrogen responsive elements and a promoter proximal region upstream of the TATA box, which is characterized by a high density of binding sites for the transcription factors CTF/NF-1, C/EBP and HNF3. DNA accessibility to restriction enzymes within the chromosomal copy of the vitellogenin gene B1 promoter shows that the estrogen responsive unit and the promoter proximal region are sensitive to digestion in uninduced and estrogen-induced hepatocytes but not in erythrocyte nuclei. Together, these findings support the notion that chromatin configuration as well as the interplay of promoter elements mediate proper hormone-dependent and tissue-specific expression of the B1 vitellogenin gene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aquaporins (AQPs) are a family of proteins that mediate water transport across cells, but the extent to which they are involved in water transport across endothelial cells of the blood-brain barrier is not clear. Expression of AQP1 and AQP4 in rat brain microvessel endothelial cells was investigated in order to determine whether these isoforms were present and, in particular, to examine the hypothesis that brain endothelial expression of AQPs is dynamic and regulated by astrocytic influences. Reverse-transcriptase-polymerase chain reaction (RT-PCR) and immunocytochemistry showed that AQP1 mRNA and protein are present at very low levels in primary rat brain microvessel endothelial cells, and are up-regulated in passaged cells. Upon passage, endothelial cell expression of mdr1a mRNA is decreased, indicating loss of blood-brain barrier phenotype. In passage 4 endothelial cells, AQP1 mRNA levels are reduced by coculture above rat astrocytes, demonstrating that astrocytic influences are important in maintaining the low levels of AQP1 characteristic of the blood-brain barrier endothelium. Reverse-transcriptase-PCR revealed very low levels of AQP1 mRNA present in the RBE4 rat brain microvessel endothelial cell line, with no expression detected in primary cultures of rat astrocytes or in the C6 rat glioma cell line. In contrast, AQP4 mRNA is strongly expressed in astrocytes, but no expression is found in primary or passaged brain microvessel endothelial cells, or in RBE4 or C6 cells. Our results support the concept that expression of AQP1, which is seen in many non-brain endothelia, is suppressed in the specialized endothelium of the blood-brain barrier.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objectives The study`s aims were to evaluate the antimycobacterial activity of 13 synthetic neolignan analogues and to perform structure activity relationship analysis (SAR). The cytotoxicity of the compound 2-phenoxy-1-phenylethanone (LS-2, 1) in mammalian cells, such as the acute toxicity in mice, was also evaluated. Methods The extra and intracellular antimycobacterial activity was evaluated on Mycobacterium tuberculosis H37Rv. Cytotoxicity studies were performed using V79 cells, J774 macrophages and rat hepatocytes. Additionally, the in-vivo acute toxicity was tested in mice. The SAR analysis was performed by Principal Component Analysis (PCA). Key findings Among the 13 analogues tested, LS-2 (1) was the most effective, showing promising antimycobacterial activity and very low cytotoxicity in V79 cells and in J774 macrophages, while no toxicity was observed in rat hepatocytes. The selectivity index (SI) of LS-2 (1) was 91 and the calculated LD50 was 1870 mg/kg, highlighting the very low toxicity in mice. SAR analysis showed that the highest electrophilicity and the lowest molar volume are physical-chemical characteristics important for the antimycobacterial activity of the LS-2 (1). Conclusions LS-2 (1) showed promising antimycobacterial activity and very weak cytotoxicity in cell culture, as well as an absence of toxicity in primary culture of hepatocytes. In the acute toxicity study there was an indication of absence of toxicity on murine models, in vivo.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cylindrospermopsin (CYN) is a hepatotoxin isolated from the blue-green alga Cylindrospermopsis raciborskii. The role of both glutathione (GSH) and the cytochrome P450 enzyme system (P450) in the mechanism of toxicity of CYN has been previously investigated in in vitro systems. We have investigated the role of GSH and P450 in vivo in mice. Mice pre-treated with buthionine sulphoximine and diethyl maleate to deplete hepatic GSH prior to dosing with 0.2 mg/kg CYN showed a seven-day survival rate of 5/13 while the control group rate was 9/14. Dosing mice with 0.2 mg/kg CYN produced a small decrease in hepatic GSH with a characteristic rebound effect at 24 h, The magnitude of this effect is however small and combined with the non-significant difference in survival rates after GSH depletion suggest depletion of GSH by CYN could not be a primary mechanism for CYN toxicity, Conversely, pro-treatment with piperonyl butoxide, a P450 inhibitor, protected mice against CYN toxicity giving a survival rate of 10/10 compared with 4/10 in the control group (p < 0.05 Chi squared) and was protective at doses up to 0.8 mg/kg, suggesting activation of CYN by P450 is of primary importance in the mechanism of action. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Bioengenharia

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study demonstrates that the expression of the peroxisome proliferator-activated receptor alpha (PPAR alpha) is regulated by glucocorticoid hormones in hepatocytes. Hydrocortisone, dexamethasone, and triamcinolone stimulated PPAR alpha mRNA synthesis in a dose-dependent manner in primary rat hepatocyte cultures. This glucocorticoid stimulation was inhibited by RU 486, a specific glucocorticoid antagonist. Moreover, in contrast to glucocorticoid hormones, the mineralocorticoid aldosterone had only a weak effect, suggesting that the hormonal stimulation of PPAR alpha was mediated by the glucocorticoid receptor. The induction was not prevented by cycloheximide treatment of the hepatocytes, indicating that it was mediated by preexisting glucocorticoid receptor. Finally, the RNA synthesis inhibitor actinomycin D abolished the stimulatory effect of dexamethasone, and nuclear run-on analysis showed an increase of PPAR alpha transcripts after hormonal induction. Thus, the PPAR alpha gene is an early response gene of glucocorticoids that control its expression at the transcriptional level.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Induction of drug-metabolizing enzymes (DMEs) is highly species-specific and can lead to drug-drug interaction and toxicities. In this series of studies we tested the species specificity of the antidiabetic drug development candidate and mixed peroxisome proliferator-activated receptor (PPAR) alpha/gamma agonist (S)-4-O-tolylsulfanyl-2-(4-trifluormethyl-phenoxy)-butyric acid (EMD 392949, EMD) with regard to the induction of gene expression and activities of DMEs, their regulators, and typical PPAR target genes. EMD clearly induced PPARalpha target genes in rats in vivo and in rat hepatocytes but lacked significant induction of DMEs, except for cytochrome P450 (P450) 4A. CYP2C and CYP3A were consistently induced in livers of EMD-treated monkeys. Interestingly, classic rodent peroxisomal proliferation markers were induced in monkeys after 17 weeks but not after a 4-week treatment, a fact also observed in human hepatocytes after 72 h but not 24 h of EMD treatment. In human hepatocyte cultures, EMD showed similar gene expression profiles and induction of P450 activities as in monkeys, indicating that the monkey is predictive for human P450 induction by EMD. In addition, EMD induced a similar gene expression pattern as the PPARalpha agonist fenofibrate in primary rat and human hepatocyte cultures. In conclusion, these data showed an excellent correlation of in vivo data on DME gene expression and activity levels with results generated in hepatocyte monolayer cultures, enabling a solid estimation of human P450 induction. This study also clearly highlighted major differences between primates and rodents in the regulation of major inducible P450s, with evidence of CYP3A and CYP2C inducibility by PPARalpha agonists in monkeys and humans.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nanogenotoxicity is a crucial endpoint in safety testing of nanomaterials as it addresses potential mutagenicity, which has implications for risks of both genetic disease and carcinogenesis. Within the NanoTEST project, we investigated the genotoxic potential of well-characterised nanoparticles (NPs): titanium dioxide (TiO2) NPs of nominal size 20 nm, iron oxide (8 nm) both uncoated (U-Fe3O4) and oleic acid coated (OC-Fe3O4), rhodamine-labelled amorphous silica 25 (Fl-25 SiO2) and 50 nm (Fl-50 SiO) and polylactic glycolic acid polyethylene oxide polymeric NPs - as well as Endorem® as a negative control for detection of strand breaks and oxidised DNA lesions with the alkaline comet assay. Using primary cells and cell lines derived from blood (human lymphocytes and lymphoblastoid TK6 cells), vascular/central nervous system (human endothelial human cerebral endothelial cells), liver (rat hepatocytes and Kupffer cells), kidney (monkey Cos-1 and human HEK293 cells), lung (human bronchial 16HBE14o cells) and placenta (human BeWo b30), we were interested in which in vitro cell model is sufficient to detect positive (genotoxic) and negative (non-genotoxic) responses. All in vitro studies were harmonized, i.e. NPs from the same batch, and identical dispersion protocols (for TiO2 NPs, two dispersions were used), exposure time, concentration range, culture conditions and time-courses were used. The results from the statistical evaluation show that OC-Fe3O4 and TiO2 NPs are genotoxic in the experimental conditions used. When all NPs were included in the analysis, no differences were seen among cell lines - demonstrating the usefulness of the assay in all cells to identify genotoxic and non-genotoxic NPs. The TK6 cells, human lymphocytes, BeWo b30 and kidney cells seem to be the most reliable for detecting a dose-response.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La butirilcolinesterasa humana (BChE; EC 3.1.1.8) es una enzima polimórfica sintetizada en el hígado y en el tejido adiposo, ampliamente distribuida en el organismo y encargada de hidrolizar algunos ésteres de colina como la procaína, ésteres alifáticos como el ácido acetilsalicílico, fármacos como la metilprednisolona, el mivacurium y la succinilcolina y drogas de uso y/o abuso como la heroína y la cocaína. Es codificada por el gen BCHE (OMIM 177400), habiéndose identificado más de 100 variantes, algunas no estudiadas plenamente, además de la forma más frecuente, llamada usual o silvestre. Diferentes polimorfismos del gen BCHE se han relacionado con la síntesis de enzimas con niveles variados de actividad catalítica. Las bases moleculares de algunas de esas variantes genéticas han sido reportadas, entre las que se encuentra las variantes Atípica (A), fluoruro-resistente del tipo 1 y 2 (F-1 y F-2), silente (S), Kalow (K), James (J) y Hammersmith (H). En este estudio, en un grupo de pacientes se aplicó el instrumento validado Lifetime Severity Index for Cocaine Use Disorder (LSI-C) para evaluar la gravedad del consumo de “cocaína” a lo largo de la vida. Además, se determinaron Polimorfismos de Nucleótido Simple (SNPs) en el gen BCHE conocidos como responsables de reacciones adversas en pacientes consumidores de “cocaína” mediante secuenciación del gen y se predijo el efecto delos SNPs sobre la función y la estructura de la proteína, mediante el uso de herramientas bio-informáticas. El instrumento LSI-C ofreció resultados en cuatro dimensiones: consumo a lo largo de la vida, consumo reciente, dependencia psicológica e intento de abandono del consumo. Los estudios de análisis molecular permitieron observar dos SNPs codificantes (cSNPs) no sinónimos en el 27.3% de la muestra, c.293A>G (p.Asp98Gly) y c.1699G>A (p.Ala567Thr), localizados en los exones 2 y 4, que corresponden, desde el punto de vista funcional, a la variante Atípica (A) [dbSNP: rs1799807] y a la variante Kalow (K) [dbSNP: rs1803274] de la enzima BChE, respectivamente. Los estudios de predicción In silico establecieron para el SNP p.Asp98Gly un carácter patogénico, mientras que para el SNP p.Ala567Thr, mostraron un comportamiento neutro. El análisis de los resultados permite proponer la existencia de una relación entre polimorfismos o variantes genéticas responsables de una baja actividad catalítica y/o baja concentración plasmática de la enzima BChE y algunas de las reacciones adversas ocurridas en pacientes consumidores de cocaína.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dronedarone is a new antiarrhythmic drug with an amiodarone-like benzofuran structure. Shortly after its introduction, dronedarone became implicated in causing severe liver injury. Amiodarone is a well-known mitochondrial toxicant. The aim of our study was to investigate mechanisms of hepatotoxicity of dronedarone in vitro and to compare them with amiodarone. We used isolated rat liver mitochondria, primary human hepatocytes, and the human hepatoma cell line HepG2, which were exposed acutely or up to 24h. After exposure of primary hepatocytes or HepG2 cells for 24h, dronedarone and amiodarone caused cytotoxicity and apoptosis starting at 20 and 50 µM, respectively. The cellular ATP content started to decrease at 20 µM for both drugs, suggesting mitochondrial toxicity. Inhibition of the respiratory chain required concentrations of ~10 µM and was caused by an impairment of complexes I and II for both drugs. In parallel, mitochondrial accumulation of reactive oxygen species (ROS) was observed. In isolated rat liver mitochondria, acute treatment with dronedarone decreased the mitochondrial membrane potential, inhibited complex I, and uncoupled the respiratory chain. Furthermore, in acutely treated rat liver mitochondria and in HepG2 cells exposed for 24h, dronedarone started to inhibit mitochondrial β-oxidation at 10 µM and amiodarone at 20 µM. Similar to amiodarone, dronedarone is an uncoupler and an inhibitor of the mitochondrial respiratory chain and of β-oxidation both acutely and after exposure for 24h. Inhibition of mitochondrial function leads to accumulation of ROS and fatty acids, eventually leading to apoptosis and/or necrosis of hepatocytes. Mitochondrial toxicity may be an explanation for hepatotoxicity of dronedarone in vivo.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hypermutations in hepatitis B virus (HBV) DNA by APOBEC3 cytidine deaminases have been detected in vitro and in vivo, and APOBEC3G (A3G) and APOBEC3F (A3F) have been shown to inhibit the replication of HBV in vitro, but the presumably low or even absent hepatic expression of these enzymes has raised the question as to their physiological impact on HBV replication. We show that normal human liver expresses the mRNAs of APOBEC3B (A3B), APOBEC3C (A3C), A3F, and A3G. In primary human hepatocytes, interferon alpha (IFN-alpha) stimulated the expression of these cytidine deaminases up to 14-fold, and the mRNAs of A3G, A3F, and A3B reached expression levels of 10%, 3%, and 3%, respectively, relative to GAPDH mRNA abundance. On transfection, the full-length protein A3B(L) inhibited HBV replication in vitro as efficiently as A3G or A3F, whereas the truncated splice variant A3B(S) and A3C had no effect. A3B(L) and A3B(S) were detected predominantly in the nucleus of uninfected cells; however, in HBV-expressing cells both proteins were found also in the cytoplasm and were associated with HBV viral particles, similarly to A3G and A3F. Moreover, A3G, A3F, and A3B(L), but not A3B(S), induced extensive G-to-A hypermutations in a fraction of the replicated HBV genomes. In conclusion, the editing enzymes A3B(L), A3F, and most markedly A3G, which are expressed in liver and up-regulated by IFN-alpha in hepatocytes, are candidates to contribute to the noncytolytic clearance of HBV.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

AIM: To investigate the inhibitory effects of taltobulin (HTI-286), a synthetic analogue of natural hemiasterlin derived from marine sponges, on hepatic tumor growth in vitro and in vivo. METHODS: The potential anti-proliferative effects of HTI-286 on different hepatic tumor cell lines in vitro and in vivo were examined. RESULTS: HTI-286 significantly inhibited proliferation of all three hepatic tumor cell lines (mean IC50 = 2 nmol/L +/- 1 nmol/L) in vitro. Interestingly, no decrease in viable primary human hepatocytes (PHH) was detected under HTI-286 exposure. Moreover, intravenous administration of HTI-286 significantly inhibited tumor growth in vivo (rat allograft model). CONCLUSION: HTI-286 might be considered a potent promising drug in treatment of liver malignancies. HTI-286 is currently undergoing clinical evaluation in cancer patients.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, we established cell culture conditions for primary equine hepatocytes allowing cytochrome P450 enzyme (CYP) induction experiments. Hepatocytes were isolated after a modified method of Bakala et al. (2003) and cultivated on collagen I coated plates. Three different media were compared for their influence on morphology, viability and CYP activity of the hepatocytes. CYP activity was evaluated with the fluorescent substrate 7-benzyloxy-4-trifluoromethylcoumarin. Induction experiments were carried out with rifampicin, dexamethasone or phenobarbital. Concentration-response curves for induction with rifampicin were created. Williams' medium E showed the best results on morphology and viability of the hepatocytes and was therefore used for the following induction experiments. Cells cultured in Dulbecco's Modified Eagle Medium were not inducible. Incubation with rifampicin increased the CYP activity in two different hepatocyte preparations in a dose dependent manner (EC50=1.20 μM and 6.06 μM; Emax=4.1- and 3.4-fold induction). No increase in CYP activity was detected after incubation with dexamethasone or phenobarbital. The hepatocyte culture conditions established in this study proved to be valuable for investigation of the induction of equine CYPs. In further studies, other equine drugs can be evaluated for CYP induction with this in vitro system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The IFNL4 gene is negatively associated with spontaneous and treatment-induced clearance of hepatitis C virus infection. The activity of IFNλ4 has an important causal role in the pathogenesis, but the molecular details are not fully understood. One possible reason for the detrimental effect of IFNλ4 could be a tissue-specific regulation of an unknown subset of genes. To address both tissue and subtype specificity in the interferon response, we treated primary human hepatocytes and airway epithelial cells with IFNα, IFNλ3 or IFNλ4 and assessed interferon mediated gene regulation using transcriptome sequencing. Our data show a surprisingly similar response to all three subtypes of interferon. We also addressed the tissue specificity of the response, and identified a subset of tissue-specific genes. However, the interferon response is robust in both tissues with the majority of the identified genes being regulated in hepatocytes as well as airway epithelial cells. Thus we provide an in-depth analysis of the liver interferon response seen over an array of interferon subtypes and compare it to the response in the lung epithelium.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mechanisms responsible for the induction of matrix-degrading proteases during lung injury are ill defined. Macrophage-derived mediators are believed to play a role in regulating synthesis and turnover of extracellular matrix at sites of inflammation. We find a localized increase in the expression of the rat interstitial collagenase (MMP-13; collagenase-3) gene from fibroblastic cells directly adjacent to macrophages within silicotic rat lung granulomas. Conditioned medium from macrophages isolated from silicotic rat lungs was found to induce rat lung fibroblast interstitial collagenase gene expression. Conditioned medium from primary rat lung macrophages or J774 monocytic cells activated by particulates in vitro also induced interstitial collagenase gene expression. Tumor necrosis factor-α (TNF-α) alone did not induce interstitial collagenase expression in rat lung fibroblasts but did in rat skin fibroblasts, revealing tissue specificity in the regulation of this gene. The activity of the conditioned medium was found to be dependent on the combined effects of TNF-α and 12-lipoxygenase-derived arachidonic acid metabolites. The fibroblast response to this conditioned medium was dependent on de novo protein synthesis and involved the induction of nuclear activator protein-1 activity. These data reveal a novel requirement for macrophage-derived 12-lipoxygenase metabolites in lung fibroblast MMP induction and provide a mechanism for the induction of resident cell MMP gene expression during inflammatory lung processes.