991 resultados para Prestress losses
Resumo:
We argue that the procompetitive effect of international trade may bring about significant welfare costs that have not been recognized. We formulate a stylized general equilibrium model with a continuum of imperfectly competitive industries to show that, under plausible conditions, a trade-induced increase in competition can actually amplify monopoly distortions. This happens because trade, while lowering the average level of market power, may increase its cross-sectoral dispersion. Using data on US industries, we document a dramatic increase in the dispersion of market power overtime. We also show evidence that trade might be responsible for it and provide some quantifications of the induced welfare cost. Our results suggest that, to avoid some unpleasant effects of globalization, trade integration should be accompanied by procompetitive reforms (i.e., deregulation) in the nontraded sectors.
Resumo:
We test whether risk attitudes change when losses instead of gains areinvolved. The study of gain-loss asymmetries has been largely confinedto reflected choices, where all the money amounts of a positiveprospect are multiplied by minus one. We define the decomposition reflection = translation + probability switch, and experimentally findboth a translation effect (risk attraction becomes more frequent whengains are translated into losses) and a probability switch effect (riskattraction becomes more frequent when the probability of the best outcomedecreases). Surprisingly, the switch effect is somewhat stronger than thetranslation effect, negating a conventional reflection effect when onestarts with choices between gains with a low probability of the bestoutcome. We conclude by arguing that, while both the translation effectand the switch effect contradict the expected utility hypothesis, thetranslation effect implies a deeper violation of standard preference theory.
Resumo:
The most advanced stage of water erosion, the gully, represents severe problems in different contexts, both in rural and urban environments. In the search for a stabilization of the process in a viable manner it is of utmost importance to assess the efficiency of evaluation methodologies. For this purpose, the efficiency of low-cost conservation practices were tested for the reduction of soil and nutrient losses caused by erosion from gullies in Pinheiral, state of Rio de Janeiro. The following areas were studied: gully recovered by means of physical and biological strategies; gullies in recovering stage, by means of physical strategies only, and gullies under no restoration treatment. During the summer of 2005/2006, the following data sets were collected for this study: soil classification of each of the eroded gully areas; planimetric and altimetric survey; determination of rain erosivity indexes; determination of amount of soil sediment; sediment grain size characteristics; natural amounts of nutrients Ca, Mg, K and P, as well as total C and N concentrations. The results for the three first measurements were 52.5, 20.5, and 29.0 Mg in the sediments from the gully without intervention, and of 1.0, 1.7 and 1.8 Mg from the gully with physical interventions, indicating an average reduction of 95 %. The fully recovered gully produced no sediment during the period. The data of total nutrient loss from the three gullies under investigation showed reductions of 98 % for the recovering gully, and 99 % for the fully recovered one. As for the loss of nutrients, the data indicate a nutrient loss of 1,811 kg from for the non-treated gully. The use of physical and biological interventions made it possible to reduce overall nutrient loss by more than 96 %, over the entire rainy season, as compared to the non-treated gully. Results show that the methods used were effective in reducing soil and nutrient losses from gullies.
Resumo:
The quantification of ammonia (NH3) losses from sugarcane straw fertilized with urea can be performed with collectors that recover the NH3 in acid-treated absorbers. Thus, the use of an open NH3 collector with a polytetrafluoroethylene (PTFE)-wrapped absorber is an interesting option since its cost is low, handling easy and microclimatic conditions irrelevant. The aim of this study was to evaluate the efficiency of an open collector for quantifying NH3-N volatilized from urea applied over the sugarcane straw. The experiment was carried out in a sugarcane field located near Piracicaba, São Paulo, Brazil. The NH3-N losses were estimated using a semi-open static collector calibrated with 15N (reference method) and an open collector with an absorber wrapped in PTFE film. Urea was applied to the soil surface in treatments corresponding to rates of 50, 100, 150 and 200 kg ha-1 N. Applying urea-N fertilizer on sugarcane straw resulted in losses NH3-N up to 24 % of the applied rate. The amount of volatile NH3-N measured in the open and the semi-open static collector did not differ. The effectiveness of the collection system varied non-linearly, with an average value of 58.4 % for the range of 100 to 200 kg ha-1 of urea-N. The open collector showed significant potential for use; however, further research is needed to verify the suitability of the proposed method.
Resumo:
Interrill erosion occurs by the particle breakdown caused by raindrop impact, by particle transport in surface runoff, by dragging and suspension of particles disaggregated from the soil surface, thus removing organic matter and nutrients that are essential for agricultural production. Crop residues on the soil surface modify the characteristics of the runoff generated by rainfall and the consequent particle breakdown and sediment transport resulting from erosion. The objective of this study was to determine the minimum amount of mulch that must be maintained on the soil surface of a sugarcane plantation to reduce the soil, water and nutrient losses by decreasing interrill erosion. The study was conducted in Pradópolis, São Paulo State, in 0.5 x 1.0 m plots of an Oxisol, testing five treatments in four replications. The application rates were based on the crop residue production of the area of 1.4 kg m-2 (T1- no cane trash; T2-25 % of the cane trash; T3- 50 % trash; T4-75 % trash; T5-100 % sugarcane residues on the surface), and simulated rainfall was applied at an intensity of 65 mm h-1 for 60 min. Runoff samples were collected in plastic containers and soon after taken to the laboratory to quantify the losses of soil, water and nutrients. To minimize soil loss by interrill erosion, 75 % of the cane mulch must be maintained on the soil, to control water loss 50 % must be maintained and 25 % trash controls organic matter and nutrient losses. This information can contribute to optimize the use of this resource for soil conservation on the one hand and the production of clean energy in sugar and alcohol industries on the other.
Resumo:
The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR) and tortuosity (T) and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in São Carlos (Fazenda Canchim), in São Paulo State, Brazil. Experimental plots of 33 m² were treated with two tillage practices in three replications, consisting of: untilled (no-tillage) soil (NTS) and conventionally tilled (plowing plus double disking) soil (CTS). Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e.g., soil type, declivity, slope length, among others not analyzed in this study.
Resumo:
Hypomagnesemia and hypophosphatemia are frequent after severe burns; however, increased urinary excretion does not sufficiently explain the magnitude of the mineral depletion. We measured the mineral content of cutaneous exudates during the first week after injury. Sixteen patients aged 34 +/- 9 y (mean +/- SD) with thermal burns were studied prospectively and divided in 3 groups according to the extent of their burn injury and the presence or absence of mineral supplements: group 1 (n = 5), burns covering 26 +/- 5% of body surface; group 2 (n = 6), burns covering 41 +/- 10%; and group 3 (n = 5), burns covering 42 +/- 6% with prescription of magnesium and phosphate supplements. Cutaneous exudates were extracted from the textiles (surgical drapes, dressings, sheets, etc) surrounding the patients from day 1 to day 7 after injury. Mean magnesium serum concentrations decreased below reference ranges in 12 patients between days 1 and 4 and normalized thereafter. Phosphate, normal on day 0, was low during the first week. Albumin concentrations, normal on day 0, decreased and remained low. Urinary magnesium and phosphate excretion were within reference ranges and not larger in group 3. Mean daily cutaneous losses were 16 mmol Mg/d and 11 mmol P/d (largest in group 2). Exudative magnesium losses were correlated with burn severity (r = 0.709, P = 0.003). Cutaneous magnesium losses were nearly four times larger than urinary losses whereas cutaneous phosphate losses were smaller than urinary phosphate losses. Mean daily losses of both magnesium and phosphate were more than the recommended dietary allowances. Exudative losses combined with urinary losses largely explained the increased mineral requirements after burn injury.
Resumo:
Rainfall erosivity is one of the main factors related to water erosion in the tropics. This work focused on relating soil loss from a typic dystrophic Tb Haplic Cambisol (CXbd) and a typic dystrophic Red Latosol (LVdf) to different patterns of natural erosive rainfall. The experimental plots of approximately 26 m² (3 x 8.67 m) consisted of a CXbd area with a 0.15 m m-1 slope and a LVdf area with 0.12 m m-1 slope, both delimited by galvanized plates. Drainpipes were installed at the lower part of these plots to collect runoff, interconnected with a Geib or multislot divisor. To calculate erosivity (EI30), rainfall data, recorded continuously at a weather station in Lavras, were used. The data of erosive rainfall events were measured (10 mm precipitation intervals, accuracy 0.2 mm, 24 h period, 20 min intervals), characterized as rainfall events with more than 10 mm precipitation, maximum intensity > 24 mm h-1 within 15 min, or kinetic energy > 3.6 MJ, which were used in this study to calculate the rainfall erosivity parameter, were classified according to the moment of peak precipitation intensity in advanced, intermediate and delayed patterns. Among the 139 erosive rainfall events with CXbd soil loss, 60 % were attributed to the advanced pattern, with a loss of 415.9 Mg ha-1, and total losses of 776.0 Mg ha-1. As for the LVdf, of the 93 erosive rainfall events with soil loss, 58 % were listed in the advanced pattern, with 37.8 Mg ha-1 soil loss and 50.9 Mg ha-1 of total soil loss. The greatest soil losses were observed in the advanced rain pattern, especially for the CXbd. From the Cambisol, the soil loss per rainfall event was greatest for the advanced pattern, being influenced by the low soil permeability.
Resumo:
The dynamics of N losses in fertilizer by ammonia volatilization is affected by several factors, making investigation of these dynamics more complex. Moreover, some features of the behavior of the variable can lead to deviation from normal distribution, making the main commonly adopted statistical strategies inadequate for data analysis. Thus, the purpose of this study was to evaluate the patterns of cumulative N losses from urea through ammonia volatilization in order to find a more adequate and detailed way of assessing the behavior of the variable. For that reason, changes in patterns of ammonia volatilization losses as a result of applying different combinations of two soil classes [Planossolo and Chernossolo (Typic Albaqualf and Vertic Argiaquolls)] and different rates of urea (50, 100 and 150 kg ha-1 N), in the presence or absence of a urease inhibitor, were evaluated, adopting a 2 × 3 × 2 factorial design with four replications. Univariate and multivariate analysis of variance were performed using the adjusted parameter values of a logistic function as a response variable. The results obtained from multivariate analysis indicated a prominent effect of the soil class factor on the set of parameters, indicating greater relevance of soil adsorption potential on ammonia volatilization losses. Univariate analysis showed that the parameters related to total N losses and rate of volatilization were more affected by soil class and the rate of urea applied. The urease inhibitor affected only the rate and inflection point parameters, decreasing the rate of losses and delaying the beginning of the process, but had no effect on total ammonia losses. Patterns of ammonia volatilization losses provide details on behavior of the variable, details which can be used to develop and adopt more accurate techniques for more efficient use of urea.
Resumo:
We report on the growth of epitaxial YBa2Cu3O7 thin films on X-cut LiNbO3 single crystals. The use of double CeO2/YSZ buffer layers allows a single in-plane orientation of YBa2Cu3O7, and results in superior superconducting properties. In particular, surface resistance Rs values of 1.4 m¿ have been measured at 8 GHz and 65 K. The attainment of such low values of Rs constitutes a key step toward the incorporation of high Tc materials as electrodes in photonic and acoustic devices.
Resumo:
Selostus: Typen ja fosforin kulkeutuminen pinta- ja salaojavalunnassa lietelannalla ja NKP-lannoitteella lannoitetulta nurmelta
Resumo:
Hygroscopic fertilizers tend to absorb moisture from the air and may have undesirable characteristics such as moistness, clumping and lower fluidity, hampering the application. The increasing use of urea is due to its numerous advantages, although this nitrogen (N) source is highly susceptible to volatilization losses, particularly when applied to the soil surface of management systems with conservation of crop residues. The volatilization losses can be minimized by slow or controlled-release fertilizers, with controlled water solubility of the urea-coating materials; and by stabilized fertilizers, which prolong the period during which N remains in the amide or ammonia forms by urease inhibitors. This study evaluated the hygroscopicity of and ammonia volatilization from urea coated with boric acid and copper sulfate or with sulfur. The hygroscopicity of the sources was evaluated over time after exposure to five levels of relative humidity (RH) and volatilization evaluated after application to the soil surface covered with sugarcane trash. Ammonium nitrate has a low potential for volatilization losses, but is highly hygroscopic. Although coating with boric acid and copper sulfate or elemental sulfur reduced the critical humidity level of urea, the delay in the volatilization process is a potential positive factor.
Resumo:
Integrin-mediated force application induces a conformational change in latent TGF-β1 that leads to the release of the active form of the growth factor from the extracellular matrix (ECM). Mechanical activation of TGF-β1 is currently understood as an acute process that depends on the contractile force of cells. However, we show that ECM remodeling, preceding the activation step, mechanically primes latent TGF-β1 akin to loading a mechanical spring. Cell-based assays and unique strain devices were used to produce a cell-derived ECM of controlled organization and prestrain. Mechanically conditioned ECM served as a substrate to measure the efficacy of TGF-β1 activation after cell contraction or direct force application using magnetic microbeads. The release of active TGF-β1 was always higher from prestrained ECM as compared with unorganized and/or relaxed ECM. The finding that ECM prestrain regulates the bioavailability of TGF-β1 is important to understand the context of diseases that involve excessive ECM remodeling, such as fibrosis or cancer.
Resumo:
A new method was developed for breaking high strength prestressed cable. The old method used an aluminum oxide grit packed into a special gripping jaw. The new method uses aluminum shims wrapped around the cable and then is gripped with a V-grip. The new method gives nearly 100% "good breaks" on the cable compared to approximately 10% good breaks with the old method. In addition, the new cable breaking method gives higher ultimate tensile strengths, is more reproducible, is quicker, cleaner and easier on equipment.