961 resultados para Pressure support ventilation
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
PURPOSE OF REVIEW: Mechanical ventilation is a cornerstone of ICU treatment. Because of its interaction with blood flow and intra-abdominal pressure, mechanical ventilation has the potential to alter hepato-splanchnic perfusion, abdominal organ function and thereby outcome of the most critically ill patients. RECENT FINDINGS: Mechanical ventilation can alter hepato-splanchnic perfusion, but the effects are minimal (with moderate inspiratory pressures, tidal volumes, and positive end-expiratory pressure levels) or variable (with high ones). Routine nursing procedures may cause repeated episodes of inadequate hepato-splanchnic perfusion in critically ill patients, but an association between perfusion and multiple organ dysfunction cannot yet be determined. Clinical research continues to be challenging as a result of difficulties in measuring hepato-splanchnic blood flow at the bedside. SUMMARY: Mechanical ventilation and attempts to improve oxygenation such as intratracheal suctioning and recruitment maneuvers, may have harmful consequences in patients with already limited cardiovascular reserves or deteriorated intestinal perfusion. Due to difficulties in assessing hepato-splanchnic perfusion, such effects are often not detected.
Resumo:
Inhaled nitric oxide (iNO) improves gas exchange in about 60% of patients with acute respiratory distress syndrome (ARDS). Recruitment of atelectatic lung areas may improve responsiveness and preservation of spontaneous breathing (SB) may cause recruitment. Accordingly, preservation of SB may improve effectiveness of iNO. To test this hypothesis, iNO was evaluated in experimental acute lung injury (ALI) during SB. In 24 pigs with ALI, effects of 10 ppm iNO were evaluated during controlled mechanical ventilation (CMV) and SB in random order. Preservation of SB was provided by 4 different modes: Unassisted SB was enabled by biphasic positive airway pressure (BIPAP), moderate inspiratory assist was provided by pressure support (PS) and volume-assured pressure support (VAPS), maximum assist was ensured by assist control (A/C). Statistical analysis did not reveal gas exchange improvements due to SB alone. Significant gas exchange improvements due to iNO were only achieved during unassisted SB with BIPAP (P <.05) but not during CMV or assisted SB. The authors conclude that effectiveness of iNO may be improved by unassisted SB during BIPAP but not by assisted SB. Thus combined iNO and unassisted SB is possibly most effective to improve gas exchange in severe hypoxemic ARDS.
Resumo:
INTRODUCTION: The objective was to study the effects of a novel lung volume optimization procedure (LVOP) using high-frequency oscillatory ventilation (HFOV) upon gas exchange, the transpulmonary pressure (TPP), and hemodynamics in a porcine model of surfactant depletion. METHODS: With institutional review board approval, the hemodynamics, blood gas analysis, TPP, and pulmonary shunt fraction were obtained in six anesthetized pigs before and after saline lung lavage. Measurements were acquired during pressure-controlled ventilation (PCV) prior to and after lung damage, and during a LVOP with HFOV. The LVOP comprised a recruitment maneuver with a continuous distending pressure (CDP) of 45 mbar for 2.5 minutes, and a stepwise decrease of the CDP (5 mbar every 5 minute) from 45 to 20 mbar. The TPP level was identified during the decrease in CDP, which assured a change of the PaO2/FIO2 ratio < 25% compared with maximum lung recruitment at CDP of 45 mbar (CDP45). Data are presented as the median (25th-75th percentile); differences between measurements are determined by Friedman repeated-measures analysis on ranks and multiple comparisons (Tukey's test). The level of significance was set at P < 0.05. RESULTS: The PaO2/FiO2 ratio increased from 99.1 (56.2-128) Torr at PCV post-lavage to 621 (619.4-660.3) Torr at CDP45 (CDP45) (P < 0.031). The pulmonary shunt fraction decreased from 51.8% (49-55%) at PCV post-lavage to 1.03% (0.4-3%) at CDP45 (P < 0.05). The cardiac output and stroke volume decreased at CDP45 (P < 0.05) compared with PCV, whereas the heart rate, mean arterial pressure, and intrathoracic blood volume remained unchanged. A TPP of 25.5 (17-32) mbar was required to preserve a difference in PaO2/FIO2 ratio < 25% related to CDP45; this TPP was achieved at a CDP of 35 (25-40) mbar. CONCLUSION: This HFOV protocol is easy to perform, and allows a fast determination of an adequate TPP level that preserves oxygenation. Systemic hemodynamics, as a measure of safety, showed no relevant deterioration throughout the procedure.
Resumo:
BACKGROUND: Current practice at high-frequency oscillatory ventilation (HFOV) initiation is a stepwise increase of the constant applied airway pressure to achieve lung recruitment. We hypothesized that HFOV would lead to more adverse cerebral haemodynamics than does pressure controlled ventilation (PCV) in the presence of experimental intracranial hypertension (IH) and acute lung injury (ALI) in pigs with similar mean airway pressure settings. METHODS: In 12 anesthetized pigs (24-27 kg) with IH and ALI, mean airway pressure (P(mean)) was increased (to 20, 25, 30 cm H(2)O every 30 min), either with HFOV or with PCV. The order of the two ventilatory modes (cross-over) was randomized. Mean arterial pressure (MAP), intracranial pressure (ICP), cerebral perfusion pressure (CPP), cerebral blood flow (CBF) (fluorescent microspheres), cerebral metabolism, transpulmonary pressures (P(T)), and blood gases were determined at each P(mean) setting. Our end-points of interest related to the cerebral circulation were ICP, CPP and CBF. RESULTS: CBF and cerebral metabolism were unaffected but there were no differences between the values for HFOV and PCV. ICP increased slightly (HFOV median +1 mm Hg, P<0.05; PCV median +2 mm Hg, P<0.05). At P(mean) setting of 30 cm H(2)O, CPP decreased during HFOV (median -13 mm Hg, P<0.05) and PCV (median -17 mm Hg, P<0.05) paralleled by a decrease of MAP (HFOV median -11 mm Hg, P<0.05; PCV median -13 mm Hg, P<0.05). P(T) increased (HFOV median +8 cm H(2)O, P<0.05; PCV median +8 cm H(2)O, P<0.05). Oxygenation improved and normocapnia maintained by HFOV and PCV. There were no differences between both ventilatory modes. CONCLUSIONS: In animals with elevated ICP and ALI, both ventilatory modes had effects upon cerebral haemodynamics. The effects upon cerebral haemodynamics were dependent of the P(T) level without differences between both ventilatory modes at similar P(mean) settings. HFOV seems to be a possible alternative ventilatory strategy when MAP deterioration can be avoided.
Resumo:
INTRODUCTION: The objective was to study the effects of a lung recruitment procedure by stepwise increases of mean airway pressure upon organ blood flow and hemodynamics during high-frequency oscillatory ventilation (HFOV) versus pressure-controlled ventilation (PCV) in experimental lung injury. METHODS: Lung damage was induced by repeated lung lavages in seven anesthetized pigs (23-26 kg). In randomized order, HFOV and PCV were performed with a fixed sequence of mean airway pressure increases (20, 25, and 30 mbar every 30 minutes). The transpulmonary pressure, systemic hemodynamics, intracranial pressure, cerebral perfusion pressure, organ blood flow (fluorescent microspheres), arterial and mixed venous blood gases, and calculated pulmonary shunt were determined at each mean airway pressure setting. RESULTS: The transpulmonary pressure increased during lung recruitment (HFOV, from 15 +/- 3 mbar to 22 +/- 2 mbar, P < 0.05; PCV, from 15 +/- 3 mbar to 23 +/- 2 mbar, P < 0.05), and high airway pressures resulted in elevated left ventricular end-diastolic pressure (HFOV, from 3 +/- 1 mmHg to 6 +/- 3 mmHg, P < 0.05; PCV, from 2 +/- 1 mmHg to 7 +/- 3 mmHg, P < 0.05), pulmonary artery occlusion pressure (HFOV, from 12 +/- 2 mmHg to 16 +/- 2 mmHg, P < 0.05; PCV, from 13 +/- 2 mmHg to 15 +/- 2 mmHg, P < 0.05), and intracranial pressure (HFOV, from 14 +/- 2 mmHg to 16 +/- 2 mmHg, P < 0.05; PCV, from 15 +/- 3 mmHg to 17 +/- 2 mmHg, P < 0.05). Simultaneously, the mean arterial pressure (HFOV, from 89 +/- 7 mmHg to 79 +/- 9 mmHg, P < 0.05; PCV, from 91 +/- 8 mmHg to 81 +/- 8 mmHg, P < 0.05), cardiac output (HFOV, from 3.9 +/- 0.4 l/minute to 3.5 +/- 0.3 l/minute, P < 0.05; PCV, from 3.8 +/- 0.6 l/minute to 3.4 +/- 0.3 l/minute, P < 0.05), and stroke volume (HFOV, from 32 +/- 7 ml to 28 +/- 5 ml, P < 0.05; PCV, from 31 +/- 2 ml to 26 +/- 4 ml, P < 0.05) decreased. Blood flows to the heart, brain, kidneys and jejunum were maintained. Oxygenation improved and the pulmonary shunt fraction decreased below 10% (HFOV, P < 0.05; PCV, P < 0.05). We detected no differences between HFOV and PCV at comparable transpulmonary pressures. CONCLUSION: A typical recruitment procedure at the initiation of HFOV improved oxygenation but also decreased systemic hemodynamics at high transpulmonary pressures when no changes of vasoactive drugs and fluid management were performed. Blood flow to the organs was not affected during lung recruitment. These effects were independent of the ventilator mode applied.
Resumo:
Aims Although suctioning is a standard airway maintenance procedure, there are significant associated risks, such as loss of lung volume due to high negative suction pressures. This study aims to assess the extent and duration of change in end-expiratory level (EEL) resulting from endotracheal tube (ETT) suction and to examine the relationship between EEL and regional lung ventilation in ventilated preterm infants with respiratory distress syndrome. Methods A prospective observational clinical study of the effect of ETT suction on 20 non-muscle-relaxed preterm infants with respiratory distress syndrome (RDS) on conventional mechanical ventilation was conducted in a neonatal intensive care unit. Ventilation distribution was measured with regional impedance amplitudes and EEL using electrical impedance tomography. Results ETT suction resulted in a significant increase in EEL post-suction (P < 0.01). Regionally, anterior EEL decreased and posterior EEL increased post-suction, suggesting heterogeneity. Tidal volume was significantly lower in volume-guarantee ventilation compared with pressure-controlled ventilation (P = 0.04). Conclusions ETT suction in non-muscle-relaxed and ventilated preterm infants with RDS results in significant lung volume increase that is maintained for at least 90 min. Regional differences in distribution of ventilation with ETT suction suggest that the behaviour of the lung is heterogeneous in nature.
Resumo:
The first part of this thesis combines Bolocam observations of the thermal Sunyaev-Zel’dovich (SZ) effect at 140 GHz with X-ray observations from Chandra, strong lensing data from the Hubble Space Telescope (HST), and weak lensing data from HST and Subaru to constrain parametric models for the distribution of dark and baryonic matter in a sample of six massive, dynamically relaxed galaxy clusters. For five of the six clusters, the full multiwavelength dataset is well described by a relatively simple model that assumes spherical symmetry, hydrostatic equilibrium, and entirely thermal pressure support. The multiwavelength analysis yields considerably better constraints on the total mass and concentration compared to analysis of any one dataset individually. The subsample of five galaxy clusters is used to place an upper limit on the fraction of pressure support in the intracluster medium (ICM) due to nonthermal processes, such as turbulent and bulk flow of the gas. We constrain the nonthermal pressure fraction at r500c to be less than 0.11 at 95% confidence, where r500c refers to radius at which the average enclosed density is 500 times the critical density of the Universe. This is in tension with state-of-the-art hydrodynamical simulations, which predict a nonthermal pressure fraction of approximately 0.25 at r500c for the clusters in this sample.
The second part of this thesis focuses on the characterization of the Multiwavelength Sub/millimeter Inductance Camera (MUSIC), a photometric imaging camera that was commissioned at the Caltech Submillimeter Observatory (CSO) in 2012. MUSIC is designed to have a 14 arcminute, diffraction-limited field of view populated with 576 spatial pixels that are simultaneously sensitive to four bands at 150, 220, 290, and 350 GHz. It is well-suited for studies of dusty star forming galaxies, galaxy clusters via the SZ Effect, and galactic star formation. MUSIC employs a number of novel detector technologies: broadband phased-arrays of slot dipole antennas for beam formation, on-chip lumped element filters for band definition, and Microwave Kinetic Inductance Detectors (MKIDs) for transduction of incoming light to electric signal. MKIDs are superconducting micro-resonators coupled to a feedline. Incoming light breaks apart Cooper pairs in the superconductor, causing a change in the quality factor and frequency of the resonator. This is read out as amplitude and phase modulation of a microwave probe signal centered on the resonant frequency. By tuning each resonator to a slightly different frequency and sending out a superposition of probe signals, hundreds of detectors can be read out on a single feedline. This natural capability for large scale, frequency domain multiplexing combined with relatively simple fabrication makes MKIDs a promising low temperature detector for future kilopixel sub/millimeter instruments. There is also considerable interest in using MKIDs for optical through near-infrared spectrophotometry due to their fast microsecond response time and modest energy resolution. In order to optimize the MKID design to obtain suitable performance for any particular application, it is critical to have a well-understood physical model for the detectors and the sources of noise to which they are susceptible. MUSIC has collected many hours of on-sky data with over 1000 MKIDs. This work studies the performance of the detectors in the context of one such physical model. Chapter 2 describes the theoretical model for the responsivity and noise of MKIDs. Chapter 3 outlines the set of measurements used to calibrate this model for the MUSIC detectors. Chapter 4 presents the resulting estimates of the spectral response, optical efficiency, and on-sky loading. The measured detector response to Uranus is compared to the calibrated model prediction in order to determine how well the model describes the propagation of signal through the full instrument. Chapter 5 examines the noise present in the detector timestreams during recent science observations. Noise due to fluctuations in atmospheric emission dominate at long timescales (less than 0.5 Hz). Fluctuations in the amplitude and phase of the microwave probe signal due to the readout electronics contribute significant 1/f and drift-type noise at shorter timescales. The atmospheric noise is removed by creating a template for the fluctuations in atmospheric emission from weighted averages of the detector timestreams. The electronics noise is removed by using probe signals centered off-resonance to construct templates for the amplitude and phase fluctuations. The algorithms that perform the atmospheric and electronic noise removal are described. After removal, we find good agreement between the observed residual noise and our expectation for intrinsic detector noise over a significant fraction of the signal bandwidth.
Resumo:
El soporte ventilatorio es una de las intervenciones más utilizadas en las unidades de cuidado intensivo. A pesar de su rol «salvador» puede ser un procedimiento riesgoso para el paciente si no es aplicado apropiadamente. Para disminuír los riesgos inherentes a la misma, modos ventilatorios avanzados continúan siendo desarrollados a fin de mejorar los desenlaces clínicos de los pacientes. Estos avances incluyen sistemas de control de asa cerrada, como el ASV, el cual se ajusta automáticamente a los requerimientos del paciente. Es importante el entendimiento de este novedoso modo ventilatorio por el personal médico, incluyendo sus efectos en la mecánica pulmonar. Este artículo discutirá sobre el modo de ventilación de soporte adaptativo haciendo énfasis particular en sus parámetros, ventajas y desventajas sobre la oxigenación y ventilación.
Resumo:
JUSTIFICATIVA E OBJETIVOS: Não existem estudos que associem os efeitos determinados pelas modalidades ventilatórias às repercussões hemodinâmicas durante o pneumoperitônio. O objetivo deste estudo foi avaliar as alterações na hemodinâmica determinadas pelo pneumoperitônio em cães com ventilação por volume e pressão controlados. MÉTODO: Dezesseis cães anestesiados com tiopental sódico e fentanil foram divididos em grupo 1, volume controlado, e grupo 2, pressão controlada, e submetidos ao pneumoperitônio de 10 e 15 mmHg. Foram estudados freqüência cardíaca, pressão arterial média, pressão de átrio direito, pressão de artéria pulmonar ocluída, índice cardíaco, índice de resistência vascular sistêmica e vasopressina plasmática. Os dados foram coletados em 4 momentos. M1 - antes do pneumoperitônio, M2 - 30 minutos após pneumoperitônio com 10 mmHg, M3 - 30 minutos após pneumoperitônio com 15 mmHg, M4 - 30 minutos após a deflação do pneumoperitônio. RESULTADOS: Os resultados mostraram aumento no índice cardíaco, nas pressões de átrio direito e de artéria pulmonar ocluída em M2 e M3, em ambos os grupos. A vasopressina não variou durante o procedimento e o índice de resistência vascular sistêmica não aumentou, proporcionando estabilidade da pressão arterial média em ambos os grupos. CONCLUSÕES: As modalidades ventilatórias não determinaram diferenças na resposta hemodinâmica entre os grupos estudados. A técnica anestésica utilizada e as pressões intra-abdominais alcançadas determinaram estabilidade da pressão arterial média, provavelmente decorrente da ausência do aumento no índice da resistência vascular sistêmica.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objetivou-se avaliar os efeitos cardiorrespiratório e analgésico da infusão contínua com propofol e propofol/cetamina em cadelas pré-medicadas com atropina e xilazina, submetidas a ovariossalpingohisterectomia (OSH). em seis cadelas (GP) a indução anestésica foi realizada com propofol (5mg kg-1 iv), seguido da manutenção anestésica com o mesmo fármaco em infusão contínua intravenosa na taxa inicial de 0,4mg kg-1.min-1. Outras seis cadelas (GPC) receberam a associação de propofol (3,5mg kg-1 iv) e cetamina (1mg kg-1 iv) como indução anestésica. Depois, foi feita manutenção anestésica em infusão contínua intravenosa inicial com 0,28mg kg-1.min-1 e 0,06mg kg-1.min-1 de propofol e cetamina, respectivamente. Os seguintes parâmetros foram mensurados durante a anestesia a cada 10 minutos: freqüências cardíaca (FC) e respiratória (f), pressão arterial sistólica, média e diastólica (PA), concentração final expirada de CO2 (EtCO2), volume minuto (VM), pressão parcial de gás carbônico (PaCO2), pressão parcial de oxigênio (PaO2), saturação de oxigênio na hemoglobina (SatO2), pH, bicarbonato, glicemia e temperatura retal (T). Observou-se redução da pressão arterial média entre 20 e 40 minutos de anestesia no GP. Ocorreu redução da temperatura, hipercapnia e acidose respiratória em ambos os grupos durante a anestesia. A PaO2, o bicarbonato e a glicose aumentaram de forma significativa apenas no GPC durante a anestesia. Houve necessidade de aumentar em 50 e 20% a taxa de infusão de propofol no GP e GPC respectivamente para anestesia cirúrgica satisfatória. Dessa forma, ambos os protocolos mostraram-se seguros e suficientes do ponto de vista de anestesia cirúrgica para realização da OSH em cadelas, desde que a ventilação assistida ou controlada seja instituída quando necessária e a velocidade de infusão do propofol seja 0,6 e 0,34mg kg-1.min-1 nos grupos GP e GPC, respectivamente.
Resumo:
The surgical removal of the post-hepatic septum (PHS) in the tegu lizard, Tupinambis merianae, significantly reduces resting lung volume (VLr) and maximal lung volume (VLm) when compared with tegus with intact PHS. Standardised for body mass (MB), static lung compliance was significantly less in tegus without PHS. Pleural and abdominal pressures followed, like ventilation, a biphasic pattern. In general, pressures increased during expiration and decreased during inspiration. However, during expiration pressure changes showed a marked intra- and interindividual variation. The removal of the PHS resulted in a lower cranio-caudal intracoelomic pressure differential, but had no effect on the general pattern of pressure changes accompanying ventilation. These results show that a perforated PHS that lacks striated muscle has significant influence on static breathing mechanics in Tupinambis and by analogy provides valuable insight into similar processes that led to the evolution of the mammalian diaphragm. © 2003 Elsevier Science B.V. All rights reserved.
Resumo:
BACKGROUND AND OBJECTIVES: Pressure controlled ventilation (PCV) is available in anesthesia machines, but there are no studies on its use during CO 2 pneumoperitoneum (CPP). This study aimed at evaluating pressure-controlled ventilation and hemodynamic and ventilatory changes during CPP, as compared to conventional volume controlled ventilation (VCV). METHODS: This study involved 16 dogs anesthetized with thiopental, fentanyl and pancuronium, which were randomly assigned to two groups: VC - volume controlled ventilation (n=8) and PC - pressure controlled ventilation (n=8). Hemodynamic and ventilatory parameters were monitored and recorded in 4 moments: M1 (before CPP), M2 (30 minutes after CPP = 10 mmHg), M3 (30 minutes after CPP=15 mmHg) and M4 (30 minutes after deflation). RESULTS: With CPP, there has been significant increase in tidal volume in PC group; there has been increase in airway pressures (peak and plateau), decrease in compliance with increase in CPP pressure, increase in heart rate, maintenance of mean blood pressure with higher values in the VC group in all stages; there was also increase in right atrium pressure with significant decrease after deflation, decrease in arterial pH with minor variations in PC group, greater arterial pCO 2 stability in PC group, and no significant changes in arterial pO 2. CONCLUSIONS: There were some differences in hemodynamic and ventilatory data between both ventilation control modes (VC and PC). It is possible to use pressure controlled ventilation during CPP, but the anesthesiologist must monitor and take a close look at alveolar ventilation, adjusting inspiratory pressure to ensure proper CO 2 elimination and oxygenation. © Sociedade Brasileira de Anestesiologia, 2005.