913 resultados para Preservation of latex
Resumo:
Quality changes in Labeo rohita, Cirrhinus mrigala and Tilapia mossambica were studied during storage in ice and at ambient temperature (29-32°C). After 10h at ambient temperature L. rohita and T. mossambica were completely spoiled, while C. mrigala became unacceptable within 11h. Organoleptic examination, total volatile base nitrogen and total bacterial counts showed that L. rohita (0.5 kg and above) and C. mrigala (0.5 kg and above) were acceptable up to 7 to 8 days of storage in ice in popular container (Bamboo basket) lined with palmyrah mat) at ambient temperature while T. mossambica (30-40 g) was acceptable up to 6 days. Influence of size of fish on shelf life in ice studied with reference to L. rohita showed that fishes below 500 g were acceptable up to 6 days of storage in ice in popular container at ambient temperature while those above 1000 g size were acceptable up to 8 days. Provision of an alkathene lining to the popular container extended the storage life of L. rohita from 6 days to 8 days. Pre-chilled and iced L. rohita had a longer shel flife (9 days) than merely iced sample (7 days).
Resumo:
Diatom culture and larval feeding experiments were conducted to test the viability and acceptability of preserved algal concentrates. C. calcitrans is characterised by the presence of setae which keep them suspended in cultures and make autoflocculation very difficult. Flocculation was induced by the addition of a floc-forming chemical. Using the optimum conditions, it was possible to harvest the algae within 1-h settling time and with about 84% recovery. The viability of frozen Chaetoceros was determined by actual cell reproduction. Preliminary feeding experiments showed that Chaetoceros can be successfully used as a substitute for fresh diatoms as feed for Penaeus monodon larvae. Simple freezing techniques, with or without the use of protectants has been found convenient for preserving algal concentrates in small volumes for both feeding and culture purposes.
Resumo:
Quality changes during storage were investigated for several commercially important East African freshwater fish. Lates, Bagrus, Protopterus, Tilapia esculenta and T. nilotica were examined during storage in ice and at ambient temperature (250•C). After 24 hours at ambient temperature Lates and Bagrus were completely spoilt but Protopterus was still edible. In iced storage most fish were acceptable for at least 20 days. Organoleptic examination showed that T. nilotica was acceptable after 22 days storage in ice and that gutting was only marginally beneficial. Changes in physical appearance, which could form the basis of a fish inspection system, were recorded during storage. Possible chemical quality control indices were also investigated. It was found that total volatile bases and hypoxanthine are unlikely to be useful quality indices for the species studied with the possible exception of Lates. The bacterial counts of the flesh and skin of T. esculenta and T. niloticus were found to be low (a maximum of 10 organisms per sq cm of skin or per g of flesh) after 22 days storage in ice.
Resumo:
The Yongle-Big-Bell is an exquisite heritage of ancient China and has more than 600 years history. The long history renders the suspending wooden rack serious damage. Therefore, the security is of our great concern. In order to know if the wooden rack is safe or not for the conventional striking in the festival service, a systemic research work has been done. At first the existing deformation and response to the strike of the beetle were measured, and then calculations using method of material mechanics and finite element analysis were conducted. Based on the results of our research, some concluding remarks and suggestion were given: The Yongle-Big-Bell can be struck regularly without urgent danger of collapse. In view of the existence of serious rotten damage, the repair and protection of wooden rack are pressing.
Resumo:
The structural evolution of a single-layer latex film during annealing was studied via grazing incidence ultrasmall-angle X-ray scattering (GIUSAXS) and atomic force microscopy (AFM). The latex particles were composed of a low-T-g (-54 degrees C) core (n-butylacrylate, 30 wt %) and a high-T-g (41 degrees C) shell (t-butylacrylate, 70 wt %) and had an overall diameter of about 500 nm. GIUSAXS data indicate that the q(y) scan at q(z) = 0.27 nm(-1) (out-of-plane scan) contains information about both the structure factor and the form factor. The GIUSAXS data on latex films annealed at various temperatures ranging from room temperature to 140 degrees C indicate that the structure of the latex thin film beneath the surface changed significantly. The evolution of the out-of-plane scan plot reveals the surface reconstruction of the film. Furthermore, we also followed the time-dependent behavior of structural evolution when the latex film was annealed at a relatively low temperature (60 degrees C) where restructuring within the film can be followed that cannot be detected by AFM, which detects only surface morphology.
Resumo:
Concentrations and carbon isotopic (C-14, C-13) compositions of black carbon (BC) were measured for three sediment cores collected from the Changjiang River estuary and the shelf of the East China Sea. BC concentrations ranged from 0.02 to 0.14 mg/g (dry weight), and accounted for 5% to 26% of the sedimentary total organic carbon (TOC) pool. Among the three sediment cores collected at each site, sediment from the Changjiang River estuary had relatively high BC contents compared with the sediments from the East China Sea shelf, suggesting that the Changjiang River discharge played an important role in the delivery of BC to the coastal region. Radiocarbon measurements indicate that the ages of BC are in the range of 6910 to 12250 years old B. P. (before present), that is in general, 3700 to 9000 years older than the C-14 ages of TOC in the sediments. These variable radiocarbon ages suggest that the BC preserved in the sediments was derived from the products of both biomass fire and fossil fuel combustion, as well as from ancient rock weathering. Based on an isotopic mass balance model, we calculated that fossil fuel combustion contributed most (60%. 80%) of the BC preserved in these sediments and varied with depth and locations. The deposition and burial of this "slow-cycling" BC in the sediments of the East China Sea shelf represent a significant pool of carbon sink and could greatly influence carbon cycling in the region.
Resumo:
Elemental (TOC, TN, C/N) and stable carbon isotopic (delta(13)C) compositions and n-alkane (nC(16-38)) concentrations were measured for Spartina alterniflora, a C-4 marsh grass, Typha latifolia, a C-3 marsh grass, and three sediment cores collected from middle and upper estuarine sites from the Plum Island salt marshes. Our results indicated that the organic matter preserved in the sediments was highly affected by the marsh plants that dominated the sampling sites. delta(13)C values of organic matter preserved in the upper fresh water site sediment were more negative (-23.0+/-0.3) as affected by the C-3 plants than the values of organic matter preserved in the sediments of middle (-18.9+/-0.8) and mud flat sites (-19.4+/-0.1) as influenced mainly by the C4 marsh plants. The distribution of n-alkanes measured in all sediments showed similar patterns as those determined in the marsh grasses S. alterniflora and T. latifolia, and nC(21) to nC(33) long-chain n-alkanes were the major compounds determined in all sediment samples. The strong odd-to-even carbon numbered n-alkane predominance was found in all three sediments and nC(29) was the most abundant homologue in all samples measured. Both delta(13)C compositions of organic matter and n-alkane distributions in these sediments indicate that the marsh plants could contribute significant amount of organic matter preserved in Plum Island salt marsh sediments. This suggests that salt marshes play an important role in the cycling of nutrients and organic carbon in the estuary and adjacent coastal waters. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The preservation of beam quality in a plasma wakefield accelerator driven by ultrahigh intensity and ultralow emittance beams, characteristic of future particle colliders, is a challenge. The electric field of these beams leads to plasma ions motion, resulting in a nonlinear focusing force and emittance growth of the beam. We propose to use an adiabatic matching section consisting of a short plasma section with a decreasing ion mass to allow for the beam to remain matched to the focusing force. We use analytical models and numerical simulations to show that the emittance growth can be significantly reduced.
Resumo:
Gemstone Team Organ Storage and Hibernation