946 resultados para Predictive Models


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The medium term hydropower scheduling (MTHS) problem involves an attempt to determine, for each time stage of the planning period, the amount of generation at each hydro plant which will maximize the expected future benefits throughout the planning period, while respecting plant operational constraints. Besides, it is important to emphasize that this decision-making has been done based mainly on inflow earliness knowledge. To perform the forecast of a determinate basin, it is possible to use some intelligent computational approaches. In this paper one considers the Dynamic Programming (DP) with the inflows given by their average values, thus turning the problem into a deterministic one which the solution can be obtained by deterministic DP (DDP). The performance of the DDP technique in the MTHS problem was assessed by simulation using the ensemble prediction models. Features and sensitivities of these models are discussed. © 2012 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Este trabalho objetivou predizer parâmetros da estrutura de associações macrobentônicas (composição específica, abundância, riqueza, diversidade e equitatividade) em estuários do Sul do Brasil, utilizando modelos baseados em dados ambientais (características dos sedimentos, salinidade, temperaturas do ar e da água, e profundidade). As amostragens foram realizadas sazonalmente em cinco estuários entre o inverno de 1996 e o verão de 1998. Em cada estuário as amostras foram coletadas em áreas não poluídas, com características semelhantes quanto a presença ou ausência de vegetação, profundidade e distância da desenbocadura. Para a obtenção dos modelos de predição, foram utilizados dois métodos: o primeiro baseado em Análise Discriminante Múltipla (ADM) e o segundo em Regressão Linear Múltipla (RLM). Os modelos baseados em ADM apresentaram resultados melhores do que os baseados em regressão linear. Os melhores resultados usando RLM foram obtidos para diversidade e riqueza. É possível então, concluir que modelos como aqui derivados podem representar ferramentas muito úteis em estudos de monitoramento ambiental em estuários.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Invasive exotic plants have altered natural ecosystems across much of North America. In the Midwest, the presence of invasive plants is increasing rapidly, causing changes in ecosystem patterns and processes. Early detection has become a key component in invasive plant management and in the detection of ecosystem change. Risk assessment through predictive modeling has been a useful resource for monitoring and assisting with treatment decisions for invasive plants. Predictive models were developed to assist with early detection of ten target invasive plants in the Great Lakes Network of the National Park Service and for garlic mustard throughout the Upper Peninsula of Michigan. These multi-criteria risk models utilize geographic information system (GIS) data to predict the areas at highest risk for three phases of invasion: introduction, establishment, and spread. An accuracy assessment of the models for the ten target plants in the Great Lakes Network showed an average overall accuracy of 86.3%. The model developed for garlic mustard in the Upper Peninsula resulted in an accuracy of 99.0%. Used as one of many resources, the risk maps created from the model outputs will assist with the detection of ecosystem change, the monitoring of plant invasions, and the management of invasive plants through prioritized control efforts.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sediment samples and hydrographic conditions were studied at 28 stations around Iceland. At these sites, Conductivity-Temperature-Depth (CTD) casts were conducted to collect hydrographic data and multicorer casts were conductd to collect data on sediment characteristics including grain size distribution, carbon and nitrogen concentration, and chloroplastic pigment concentration. A total of 14 environmental predictors were used to model sediment characteristics around Iceland on regional geographic space. For these, two approaches were used: Multivariate Adaptation Regression Splines (MARS) and randomForest regression models. RandomForest outperformed MARS in predicting grain size distribution. MARS models had a greater tendency to over- and underpredict sediment values in areas outside the environmental envelope defined by the training dataset. We provide first GIS layers on sediment characteristics around Iceland, that can be used as predictors in future models. Although models performed well, more samples, especially from the shelf areas, will be needed to improve the models in future.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Stream-mining approach is defined as a set of cutting-edge techniques designed to process streams of data in real time, in order to extract knowledge. In the particular case of classification, stream-mining has to adapt its behaviour to the volatile underlying data distributions, what has been called concept drift. Moreover, it is important to note that concept drift may lead to situations where predictive models become invalid and have therefore to be updated to represent the actual concepts that data poses. In this context, there is a specific type of concept drift, known as recurrent concept drift, where the concepts represented by data have already appeared in the past. In those cases the learning process could be saved or at least minimized by applying a previously trained model. This could be extremely useful in ubiquitous environments that are characterized by the existence of resource constrained devices. To deal with the aforementioned scenario, meta-models can be used in the process of enhancing the drift detection mechanisms used by data stream algorithms, by representing and predicting when the change will occur. There are some real-world situations where a concept reappears, as in the case of intrusion detection systems (IDS), where the same incidents or an adaptation of them usually reappear over time. In these environments the early prediction of drift by means of a better knowledge of past models can help to anticipate to the change, thus improving efficiency of the model regarding the training instances needed. By means of using meta-models as a recurrent drift detection mechanism, the ability to share concepts representations among different data mining processes is open. That kind of exchanges could improve the accuracy of the resultant local model as such model may benefit from patterns similar to the local concept that were observed in other scenarios, but not yet locally. This would also improve the efficiency of training instances used during the classification process, as long as the exchange of models would aid in the application of already trained recurrent models, that have been previously seen by any of the collaborative devices. Which it is to say that the scope of recurrence detection and representation is broaden. In fact the detection, representation and exchange of concept drift patterns would be extremely useful for the law enforcement activities fighting against cyber crime. Being the information exchange one of the main pillars of cooperation, national units would benefit from the experience and knowledge gained by third parties. Moreover, in the specific scope of critical infrastructures protection it is crucial to count with information exchange mechanisms, both from a strategical and technical scope. The exchange of concept drift detection schemes in cyber security environments would aid in the process of preventing, detecting and effectively responding to threads in cyber space. Furthermore, as a complement of meta-models, a mechanism to assess the similarity between classification models is also needed when dealing with recurrent concepts. In this context, when reusing a previously trained model a rough comparison between concepts is usually made, applying boolean logic. The introduction of fuzzy logic comparisons between models could lead to a better efficient reuse of previously seen concepts, by applying not just equal models, but also similar ones. This work faces the aforementioned open issues by means of: the MMPRec system, that integrates a meta-model mechanism and a fuzzy similarity function; a collaborative environment to share meta-models between different devices; a recurrent drift generator that allows to test the usefulness of recurrent drift systems, as it is the case of MMPRec. Moreover, this thesis presents an experimental validation of the proposed contributions using synthetic and real datasets.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A field study in three vineyards in southern Queensland (Australia) was carried out to develop predictive models for individual leaf area and shoot leaf area of two cultivars (Cabernet Sauvignon and Shiraz) of grapevines (Vitis Vinifera L.). Digital image analysis was used to measure leaf vein length and leaf area. Stepwise regressions of untransformed and transformed models consisting of up to six predictor variables for leaf area and three predictor variables for shoot leaf area were carried out to obtain the most efficient models. High correlation coefficients were found for log10 transformed individual leaf and shoot leaf area models. The significance of predictor variables in the models varied across vineyards and cultivars, demonstrating the discontinuous and heterogeneous nature of vineyards. The application of this work in a grapevine modeling environment and in a dynamic vineyard management context are discussed. Sample sizes for quantification of individual leaf areas and areas of leaves on shoots are proposed based on target margins of errors of sampled data.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Space-for-time substitution is often used in predictive models because long-term time-series data are not available. Critics of this method suggest factors other than the target driver may affect ecosystem response and could vary spatially, producing misleading results. Monitoring data from the Florida Everglades were used to test whether spatial data can be substituted for temporal data in forecasting models. Spatial models that predicted bluefin killifish (Lucania goodei) population response to a drying event performed comparably and sometimes better than temporal models. Models worked best when results were not extrapolated beyond the range of variation encompassed by the original dataset. These results were compared to other studies to determine whether ecosystem features influence whether space-for-time substitution is feasible. Taken in the context of other studies, these results suggest space-for-time substitution may work best in ecosystems with low beta-diversity, high connectivity between sites, and small lag in organismal response to the driver variable.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Space-for-time substitution is often used in predictive models because long-term time-series data are not available. Critics of this method suggest factors other than the target driver may affect ecosystem response and could vary spatially, producing misleading results. Monitoring data from the Florida Everglades were used to test whether spatial data can be substituted for temporal data in forecasting models. Spatial models that predicted bluefin killifish (Lucania goodei) population response to a drying event performed comparably and sometimes better than temporal models. Models worked best when results were not extrapolated beyond the range of variation encompassed by the original dataset. These results were compared to other studies to determine whether ecosystem features influence whether space-for-time substitution is feasible. Taken in the context of other studies, these results suggest space-fortime substitution may work best in ecosystems with low beta-diversity, high connectivity between sites, and small lag in organismal response to the driver variable.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To provide biological insights into transcriptional regulation, a couple of groups have recently presented models relating the promoter DNA-bound transcription factors (TFs) to downstream gene’s mean transcript level or transcript production rates over time. However, transcript production is dynamic in response to changes of TF concentrations over time. Also, TFs are not the only factors binding to promoters; other DNA binding factors (DBFs) bind as well, especially nucleosomes, resulting in competition between DBFs for binding at same genomic location. Additionally, not only TFs, but also some other elements regulate transcription. Within core promoter, various regulatory elements influence RNAPII recruitment, PIC formation, RNAPII searching for TSS, and RNAPII initiating transcription. Moreover, it is proposed that downstream from TSS, nucleosomes resist RNAPII elongation.

Here, we provide a machine learning framework to predict transcript production rates from DNA sequences. We applied this framework in the S. cerevisiae yeast for two scenarios: a) to predict the dynamic transcript production rate during the cell cycle for native promoters; b) to predict the mean transcript production rate over time for synthetic promoters. As far as we know, our framework is the first successful attempt to have a model that can predict dynamic transcript production rates from DNA sequences only: with cell cycle data set, we got Pearson correlation coefficient Cp = 0.751 and coefficient of determination r2 = 0.564 on test set for predicting dynamic transcript production rate over time. Also, for DREAM6 Gene Promoter Expression Prediction challenge, our fitted model outperformed all participant teams, best of all teams, and a model combining best team’s k-mer based sequence features and another paper’s biologically mechanistic features, in terms of all scoring metrics.

Moreover, our framework shows its capability of identifying generalizable fea- tures by interpreting the highly predictive models, and thereby provide support for associated hypothesized mechanisms about transcriptional regulation. With the learned sparse linear models, we got results supporting the following biological insights: a) TFs govern the probability of RNAPII recruitment and initiation possibly through interactions with PIC components and transcription cofactors; b) the core promoter amplifies the transcript production probably by influencing PIC formation, RNAPII recruitment, DNA melting, RNAPII searching for and selecting TSS, releasing RNAPII from general transcription factors, and thereby initiation; c) there is strong transcriptional synergy between TFs and core promoter elements; d) the regulatory elements within core promoter region are more than TATA box and nucleosome free region, suggesting the existence of still unidentified TAF-dependent and cofactor-dependent core promoter elements in yeast S. cerevisiae; e) nucleosome occupancy is helpful for representing +1 and -1 nucleosomes’ regulatory roles on transcription.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aim When faced with dichotomous events, such as the presence or absence of a species, discrimination capacity (the ability to separate the instances of presence from the instances of absence) is usually the only characteristic that is assessed in the evaluation of the performance of predictive models. Although neglected, calibration or reliability (how well the estimated probability of presence represents the observed proportion of presences) is another aspect of the performance of predictive models that provides important information. In this study, we explore how changes in the distribution of the probability of presence make discrimination capacity a context-dependent characteristic of models. For the first time,we explain the implications that ignoring the context dependence of discrimination can have in the interpretation of species distribution models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Southeastern Brazil has seen dramatic landscape modifications in recent decades, due to expansion of agriculture and urban areas; these changes have influenced the distribution and abundance of vertebrates. We developed predictive models of ecological and spatial distributions of capybaras (Hydrochoerus hydrochaeris) using ecological niche modeling. Most Occurrences of capybaras were in flat areas with water bodies Surrounded by sugarcane and pasture. More than 75% of the Piracicaba River basin was estimated as potentially habitable by capybara. The models had low omission error (2.3-3.4%), but higher commission error (91.0-98.5%); these ""model failures"" seem to be more related to local habitat characteristics than to spatial ones. The potential distribution of capybaras in the basin is associated with anthropogenic habitats, particularly with intensive land use for agriculture.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thermodynamic properties of bread dough (fusion enthalpy, apparent specific heat, initial freezing point and unfreezable water) were measured at temperatures from -40 degrees C to 35 degrees C using differential scanning calorimetry. The initial freezing point was also calculated based on the water activity of dough. The apparent specific heat varied as a function of temperature: specific heat in the freezing region varied from (1.7-23.1) J g(-1) degrees C(-1), and was constant at temperatures above freezing (2.7 J g(-1) degrees C(-1)). Unfreezable water content varied from (0.174-0.182) g/g of total product. Values of heat capacity as a function of temperature were correlated using thermodynamic models. A modification for low-moisture foodstuffs (such as bread dough) was successfully applied to the experimental data. (C) 2010 Elsevier Ltd. All rights reserved.