953 resultados para Prediction Models for Air Pollution
Resumo:
Background: Even though air pollutants exposure is associated with changes in the ocular surface and tear film, its relationship to the clinical course of blepharitis, a common eyelid disease, had not yet been investigated. Our objective was to investigate the correlation between air pollution and acute manifestations of blepharitis. Method: We recorded all cases of changes in the eyelids and ocular surface, and rated clinical findings on a scale from zero (normal) to two (severe alterations). Daily values of carbon monoxide, particulate matter smaller than 10 mu m in diameter and nitrogen dioxide concentrations and meteorological variables (temperature and relative humidity) in the vicinity of the medical service were obtained. Specific linear regression models for each outcome were constructed including pollutants as independent variables (single pollutant models). Temperature and humidity were included as confounding variables. Results: increases of 28.8 mu g/m(3) in the concentration of particulate matter and 1.1 ppm in the concentration of CO were associated with increases in cases of blepharitis on the day of exposure (5 cases, 95% CI: 1-10 and 6 cases, 95% CI: 1-12, respectively). Conclusion: Exposure to usual air pollutants concentrations present in large cities affects, in a consistent manner, the eyes of residents contributing to the increasing incidence of diseases of the eyelid margin. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Background In the last 20 years, there has been an increase in the incidence of allergic respiratory diseases worldwide and exposure to air pollution has been discussed as one of the factors associated with this increase. The objective of this study was to investigate the effects of air pollution on peak expiratory flow (PEF) and FEV1 in children with and without allergic sensitization. Methods Ninety-six children were followed from April to July, 2004 with spirometry measurements. They were tested for allergic sensitization (IgE, skin prick test, eosinophilia) and asked about allergic symptoms. Air pollution, temperature, and relative humidity data were available. Results Decrements in PEF were observed with previous 24-hr average exposure to air pollution, as well as with 310-day average exposure and were associated mainly with PM10, NO2, and O3 in all three categories of allergic sensitization. Even though allergic sensitized children tended to present larger decrements in the PEF measurements they were not statistically different from the non-allergic sensitized. Decrements in FEV1 were observed mainly with previous 24-hr average exposure and 3-day moving average. Conclusions Decrements in PEF associated with air pollution were observed in children independent from their allergic sensitization status. Their daily exposure to air pollution can be responsible for a chronic inflammatory process that might impair their lung growth and later their lung function in adulthood. Am. J. Ind. Med. 55:10871098, 2012. (c) 2012 Wiley Periodicals, Inc.
Resumo:
Air Pollution and Health: Bridging the Gap from Sources to Health Outcomes, an international specialty conference sponsored by the American Association for Aerosol Research, was held to address key uncertainties in our understanding of adverse health effects related to air pollution and to integrate and disseminate results from recent scientific studies that cut across a range of air pollution-related disciplines. The Conference addressed the science of air pollution and health within a multipollutant framework (herein "multipollutant" refers to gases and particulate matter mass, components, and physical properties), focusing on five key science areas: sources, atmospheric sciences, exposure, dose, and health effects. Eight key policy-relevant science questions integrated across various parts of the five science areas and a ninth question regarding findings that provide policy-relevant insights served as the framework for the meeting. Results synthesized from this Conference provide new evidence, reaffirm past findings, and offer guidance for future research efforts that will continue to incrementally advance the science required for reducing uncertainties in linking sources, air pollutants, human exposure, and health effects. This paper summarizes the Conference findings organized around the science questions. A number of key points emerged from the Conference findings. First, there is a need for greater focus on multipollutant science and management approaches that include more direct studies of the mixture of pollutants from sources with an emphasis on health studies at ambient concentrations. Further, a number of research groups reaffirmed a need for better understanding of biological mechanisms and apparent associations of various health effects with components of particulate matter (PM), such as elemental carbon, certain organic species, ultrafine particles, and certain trace elements such as Ni, V, and Fe(II), as well as some gaseous pollutants. Although much debate continues in this area, generation of reactive oxygen species induced by these and other species present in air pollution and the resulting oxidative stress and inflammation were reiterated as key pathways leading to respiratory and cardiovascular outcomes. The Conference also underscored significant advances in understanding the susceptibility of populations, including the role of genetics and epigenetics and the influence of socioeconomic and other confounding factors and their synergistic interactions with air pollutants. Participants also pointed out that short-and long-term intervention episodes that reduce pollution from sources and improve air quality continue to indicate that when pollution decreases so do reported adverse health effects. In the limited number of cases where specific sources or PM2.5 species were included in investigations, specific species are often associated with the decrease in effects. Other recent advances for improved exposure estimates for epidemiological studies included using new technologies such as microsensors combined with cell phone and integrated into real-time communications, hybrid air quality modeling such as combined receptor-and emission-based models, and surface observations used with remote sensing such as satellite data.
Resumo:
[EN]In this talk we introduce a new methodology for wind field simulation or forecasting over complex terrain. The idea is to use wind measurements or predictions of the HARMONIE mesoscale model as the input data for an adaptive finite element mass consistent wind model [1,2]. The method has been recently implemented in the freely-available Wind3D code [3]. A description of the HARMONIE Non-Hydrostatic Dynamics can be found in [4]. The results of HARMONIE (obtained with a maximum resolution about 1 Km) are refined by the finite element model in a local scale (about a few meters). An interface between both models is implemented such that the initial wind field approximation is obtained by a suitable interpolation of the HARMONIE results…
Resumo:
Objective: Myocardial infarction has been associated with both transportation noise and air pollution. We examined residential exposure to aircraft noise and mortality from myocardial infarction, taking air pollution into account. Methods: We analyzed the Swiss National Cohort, which includes geocoded information on residence. Exposure to aircraft noise and air pollution was determined based on geospatial noise and air-pollution (PM10) models and distance to major roads. We used Cox proportional hazard models, with age as the timescale. We compared the risk of death across categories of A-weighted sound pressure levels (dB(A)) and by duration of living in exposed corridors, adjusting for PM10 levels, distance to major roads, sex, education, and socioeconomic position of the municipality. Results: We analyzed 4.6 million persons older than 30 years who were followed from near the end of 2000 through December 2005, including 15,532 deaths from myocardial infarction (ICD-10 codes I 21, I 22). Mortality increased with increasing level and duration of aircraft noise. The adjusted hazard ratio comparing ≥60 dB(A) with <45 dB(A) was 1.3 (95% confidence interval = 0.96-1.7) overall, and 1.5 (1.0-2.2) in persons who had lived at the same place for at least 15 years. None of the other endpoints (mortality from all causes, all circulatory disease, cerebrovascular disease, stroke, and lung cancer) was associated with aircraft noise. Conclusion: Aircraft noise was associated with mortality from myocardial infarction, with a dose-response relationship for level and duration of exposure. The association does not appear to be explained by exposure to particulate matter air pollution, education, or socioeconomic status of the municipality.
Resumo:
Time series models relating short-term changes in air pollution levels to daily mortality counts typically assume that the effects of air pollution on the log relative rate of mortality do not vary with time. However, these short-term effects might plausibly vary by season. Changes in the sources of air pollution and meteorology can result in changes in characteristics of the air pollution mixture across seasons. The authors develop Bayesian semi-parametric hierarchical models for estimating time-varying effects of pollution on mortality in multi-site time series studies. The methods are applied to the updated National Morbidity and Mortality Air Pollution Study database for the period 1987--2000, which includes data for 100 U.S. cities. At the national level, a 10 micro-gram/m3 increase in PM(10) at lag 1 is associated with a 0.15 (95% posterior interval: -0.08, 0.39),0.14 (-0.14, 0.42), 0.36 (0.11, 0.61), and 0.14 (-0.06, 0.34) percent increase in mortality for winter, spring, summer, and fall, respectively. An analysis by geographical regions finds a strong seasonal pattern in the northeast (with a peak in summer) and little seasonal variation in the southern regions of the country. These results provide useful information for understanding particle toxicity and guiding future analyses of particle constituent data.
Resumo:
Prospective cohort studies have provided evidence on longer-term mortality risks of fine particulate matter (PM2.5), but due to their complexity and costs, only a few have been conducted. By linking monitoring data to the U.S. Medicare system by county of residence, we developed a retrospective cohort study, the Medicare Air Pollution Cohort Study (MCAPS), comprising over 20 million enrollees in the 250 largest counties during 2000-2002. We estimated log-linear regression models having as outcome the age-specific mortality rate for each county and as the main predictor, the average level for the study period 2000. Area-level covariates were used to adjust for socio-economic status and smoking. We reported results under several degrees of adjustment for spatial confounding and with stratification into by eastern, central and western counties. We estimated that a 10 µg/m3 increase in PM25 is associated with a 7.6% increase in mortality (95% CI: 4.4 to 10.8%). We found a stronger association in the eastern counties than nationally, with no evidence of an association in western counties. When adjusted for spatial confounding, the estimated log-relative risks drop by 50%. We demonstrated the feasibility of using Medicare data to establish cohorts for follow-up for effects of air pollution. Particulate matter (PM) air pollution is a global public health problem (1). In developing countries, levels of airborne particles still reach concentrations at which serious health consequences are well-documented; in developed countries, recent epidemiologic evidence shows continued adverse effects, even though particle levels have declined in the last two decades (2-6). Increased mortality associated with higher levels of PM air pollution has been of particular concern, giving an imperative for stronger protective regulations (7). Evidence on PM and health comes from studies of acute and chronic adverse effects (6). The London Fog of 1952 provides dramatic evidence of the unacceptable short-term risk of extremely high levels of PM air pollution (8-10); multi-site time-series studies of daily mortality show that far lower levels of particles are still associated with short-term risk (5)(11-13). Cohort studies provide complementary evidence on the longer-term risks of PM air pollution, indicating the extent to which exposure reduces life expectancy. The design of these studies involves follow-up of cohorts for mortality over periods of years to decades and an assessment of mortality risk in association with estimated long-term exposure to air pollution (2-4;14-17). Because of the complexity and costs of such studies, only a small number have been conducted. The most rigorously executed, including the Harvard Six Cities Study and the American Cancer Society’s (ACS) Cancer Prevention Study II, have provided generally consistent evidence for an association of long- term exposure to particulate matter air pollution with increased all-cause and cardio-respiratory mortality (2,4,14,15). Results from these studies have been used in risk assessments conducted for setting the U.S. National Ambient Air Quality Standard (NAAQS) for PM and for estimating the global burden of disease attributable to air pollution (18,19). Additional prospective cohort studies are necessary, however, to confirm associations between long-term exposure to PM and mortality, to broaden the populations studied, and to refine estimates by regions across which particle composition varies. Toward this end, we have used data from the U.S. Medicare system, which covers nearly all persons 65 years of age and older in the United States. We linked Medicare mortality data to (particulate matter less than 2.5 µm in aerodynamic diameter) air pollution monitoring data to create a new retrospective cohort study, the Medicare Air Pollution Cohort Study (MCAPS), consisting of 20 million persons from 250 counties and representing about 50% of the US population of elderly living in urban settings. In this paper, we report on the relationship between longer-term exposure to PM2.5 and mortality risk over the period 2000 to 2002 in the MCAPS.
Resumo:
Many studies have shown relationships between air pollution and the rate of hospital admissions for asthma. A few studies have controlled for age-specific effects by adding separate smoothing functions for each age group. However, it has not yet been reported whether air pollution effects are significantly different for different age groups. This lack of information is the motivation for this study, which tests the hypothesis that air pollution effects on asthmatic hospital admissions are significantly different by age groups. Each air pollutant's effect on asthmatic hospital admissions by age groups was estimated separately. In this study, daily time-series data for hospital admission rates from seven cities in Korea from June 1999 through 2003 were analyzed. The outcome variable, daily hospital admission rates for asthma, was related to five air pollutants which were used as the independent variables, namely particulate matter <10 micrometers (μm) in aerodynamic diameter (PM10), carbon monoxide (CO), ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2). Meteorological variables were considered as confounders. Admission data were divided into three age groups: children (<15 years of age), adults (ages 15-64), and elderly (≥ 65 years of age). The adult age group was considered to be the reference group for each city. In order to estimate age-specific air pollution effects, the analysis was separated into two stages. In the first stage, Generalized Additive Models (GAMs) with cubic spline for smoothing were applied to estimate the age-city-specific air pollution effects on asthmatic hospital admission rates by city and age group. In the second stage, the Bayesian Hierarchical Model with non-informative prior which has large variance was used to combine city-specific effects by age groups. The hypothesis test showed that the effects of PM10, CO and NO2 were significantly different by age groups. Assuming that the air pollution effect for adults is zero as a reference, age-specific air pollution effects were: -0.00154 (95% confidence interval(CI)= (-0.0030,-0.0001)) for children and 0.00126 (95% CI = (0.0006, 0.0019)) for the elderly for PM 10; -0.0195 (95% CI = (-0.0386,-0.0004)) for children for CO; and 0.00494 (95% CI = (0.0028, 0.0071)) for the elderly for NO2. Relative rates (RRs) were 1.008 (95% CI = (1.000-1.017)) in adults and 1.021 (95% CI = (1.012-1.030)) in the elderly for every 10 μg/m3 increase of PM10 , 1.019 (95% CI = (1.005-1.033)) in adults and 1.022 (95% CI = (1.012-1.033)) in the elderly for every 0.1 part per million (ppm) increase of CO; 1.006 (95%CI = (1.002-1.009)) and 1.019 (95%CI = (1.007-1.032)) in the elderly for every 1 part per billion (ppb) increase of NO2 and SO2, respectively. Asthma hospital admissions were significantly increased for PM10 and CO in adults, and for PM10, CO, NO2 and SO2 in the elderly.^
Resumo:
Over the last ten years, Salamanca has been considered among the most polluted cities in México. This paper presents a Self-Organizing Maps (SOM) Neural Network application to classify pollution data and automatize the air pollution level determination for Sulphur Dioxide (SO2) in Salamanca. Meteorological parameters are well known to be important factors contributing to air quality estimation and prediction. In order to observe the behavior and clarify the influence of wind parameters on the SO2 concentrations a SOM Neural Network have been implemented along a year. The main advantages of the SOM is that it allows to integrate data from different sensors and provide readily interpretation results. Especially, it is powerful mapping and classification tool, which others information in an easier way and facilitates the task of establishing an order of priority between the distinguished groups of concentrations depending on their need for further research or remediation actions in subsequent management steps. The results show a significative correlation between pollutant concentrations and some environmental variables.
Resumo:
This paper describes the design and application of the Atmospheric Evaluation and Research Integrated model for Spain (AERIS). Currently, AERIS can provide concentration profiles of NO2, O3, SO2, NH3, PM, as a response to emission variations of relevant sectors in Spain. Results are calculated using transfer matrices based on an air quality modelling system (AQMS) composed by the WRF (meteorology), SMOKE (emissions) and CMAQ (atmospheric-chemical processes) models. The AERIS outputs were statistically tested against the conventional AQMS and observations, revealing a good agreement in both cases. At the moment, integrated assessment in AERIS focuses only on the link between emissions and concentrations. The quantification of deposition, impacts (health, ecosystems) and costs will be introduced in the future. In conclusion, the main asset of AERIS is its accuracy in predicting air quality outcomes for different scenarios through a simple yet robust modelling framework, avoiding complex programming and long computing times.
Resumo:
Transportation Department, Office of the Assistant Secretary for Systems Development and Technology, Washington, D.C.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Thesis (Master's)--University of Washington, 2016-06