927 resultados para Predator-prey models
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
Irregularities in observed population densities have traditionally been attributed to discretization of the underlying dynamics. We propose an alternative explanation by demonstrating the evolution of spatiotemporal chaos in reaction-diffusion models for predator-prey interactions. The chaos is generated naturally in the wake of invasive waves of predators. We discuss in detail the mechanism by which the chaos is generated. By considering a mathematical caricature of the predator-prey models, we go on to explain the dynamical origin of the irregular behavior and to justify our assertion that the behavior we present is a genuine example of spatiotemporal chaos.
Resumo:
It is believed that habitat heterogeneity can change the extent of predator-prey interactions. Therefore, in this study we examined the effect of habitat heterogeneity (characterized here as an addition of refuge) on D. ater predation on M. domestica. Predation of D. ater on M. domestica larvae was carried out in experimental habitats with and without refuge, and examined at different prey densities. The number of prey eaten by beetles over 24 h of predator-prey interaction was recorded, and we investigated the strength of interaction between prey and predator in both experimental habitats by determining predator functional response. The mean number of prey eaten by beetles in the presence of refuge was significantly higher than in the absence of refuge. Females had greater weight gains than males. Logistic regression analyses revealed the type II functional response for both experimental habitats, even though data did not fit well into the random predator model. Results suggest that the addition of refuge in fact enhanced predation, as prey consumption increased in the presence of refuge. Predators kept in the presence of refuge also consumed more prey at high prey densities. Thus, we concluded that the addition of refuge was an important component mediating D. ater-M. domestica population interactions. Refuge actually acted as a refuge for predators from prey, since prey behaviors detrimental to predators were reduced in this case.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The rat exposure test (RET) is a prey (mouse)-predator (rat) situation that activates brain defensive areas and elicits hormonal and defensive behavior in the mouse. Here, we investigated possible correlations between the spatiotemporal [time spent in protected (home chamber and tunnel) and unprotected (surface) compartments and frequency of entries into the three compartments] and ethological [e.g., duration of protected and unprotected stretched-attend postures (SAP), duration of contact with the rat's compartment] measures (Experiment 1). Secondly, we investigated the effects of systemic treatment with pro- or anti-aversive drugs on the behavior that emerged from the factor analysis (Experiment 2). The effects of chronic (21 days) imipramine and fluoxetine on defensive behavior were also investigated (Experiment 3). Exp. 1 revealed that the time in the protected compartment, protected SAP and rat contacts loaded on factor 1 (defensive behavior), while the total entries and unprotected SAP loaded on factor 2 (locomotor activity). Exp. 2 showed that alprazolam (but not diazepam) selectively changed the defensive factor. Caffeine produced a mild proaversive-like effect, whereas yohimbine only decreased locomotor activity (total entries). Fluoxetine (but not imipramine) produced a weak proaversive-like effect. 5-HT1A/5-HT2 receptor ligands did not change any behavioral measure. In Exp. 3, chronic fluoxetine (but not imipramine) attenuated the defensive behavior factor without changing locomotion. Given that the defensive factor was sensitive to drugs known to attenuate (alprazolam and chronic fluoxetine) and induce (caffeine) panic attack, we suggest the RET as a useful test to assess the effects of panicolytic and panicogenic drugs. © 2012 Elsevier B.V.
Resumo:
My thesis examines fine-scale habitat use and movement patterns of age 1 Greenland cod (Gadus macrocephalus ogac) tracked using acoustic telemetry. Recent advances in tracking technologies such as GPS and acoustic telemetry have led to increasingly large and detailed datasets that present new opportunities for researchers to address fine-scale ecological questions regarding animal movement and spatial distribution. There is a growing demand for home range models that will not only work with massive quantities of autocorrelated data, but that can also exploit the added detail inherent in these high-resolution datasets. Most published home range studies use radio-telemetry or satellite data from terrestrial mammals or avian species, and most studies that evaluate the relative performance of home range models use simulated data. In Chapter 2, I used actual field-collected data from age-1 Greenland cod tracked with acoustic telemetry to evaluate the accuracy and precision of six home range models: minimum convex polygons, kernel densities with plug-in bandwidth selection and the reference bandwidth, adaptive local convex hulls, Brownian bridges, and dynamic Brownian bridges. I then applied the most appropriate model to two years (2010-2012) of tracking data collected from 82 tagged Greenland cod tracked in Newman Sound, Newfoundland, Canada, to determine diel and seasonal differences in habitat use and movement patterns (Chapter 3). Little is known of juvenile cod ecology, so resolving these relationships will provide valuable insight into activity patterns, habitat use, and predator-prey dynamics, while filling a knowledge gap regarding the use of space by age 1 Greenland cod in a coastal nursery habitat. By doing so, my thesis demonstrates an appropriate technique for modelling the spatial use of fish from acoustic telemetry data that can be applied to high-resolution, high-frequency tracking datasets collected from mobile organisms in any environment.
Resumo:
Introduced predators can have pronounced effects on naïve prey species; thus, predator control is often essential for conservation of threatened native species. Complete eradication of the predator, although desirable, may be elusive in budget-limited situations, whereas predator suppression is more feasible and may still achieve conservation goals. We used a stochastic predator-prey model based on a Lotka-Volterra system to investigate the cost-effectiveness of predator control to achieve prey conservation. We compared five control strategies: immediate eradication, removal of a constant number of predators (fixed-number control), removal of a constant proportion of predators (fixed-rate control), removal of predators that exceed a predetermined threshold (upper-trigger harvest), and removal of predators whenever their population falls below a lower predetermined threshold (lower-trigger harvest). We looked at the performance of these strategies when managers could always remove the full number of predators targeted by each strategy, subject to budget availability. Under this assumption immediate eradication reduced the threat to the prey population the most. We then examined the effect of reduced management success in meeting removal targets, assuming removal is more difficult at low predator densities. In this case there was a pronounced reduction in performance of the immediate eradication, fixed-number, and lower-trigger strategies. Although immediate eradication still yielded the highest expected minimum prey population size, upper-trigger harvest yielded the lowest probability of prey extinction and the greatest return on investment (as measured by improvement in expected minimum population size per amount spent). Upper-trigger harvest was relatively successful because it operated when predator density was highest, which is when predator removal targets can be more easily met and the effect of predators on the prey is most damaging. This suggests that controlling predators only when they are most abundant is the "best" strategy when financial resources are limited and eradication is unlikely. © 2008 Society for Conservation Biology.
Resumo:
As defined, the modeling procedure is quite broad. For example, the chosen compartments may contain a single organism, a population of organisms, or an ensemble of populations. A population compartment, in turn, could be homogeneous or possess structure in size or age. Likewise, the mathematical statements may be deterministic or probabilistic in nature, linear or nonlinear, autonomous or able to possess memory. Examples of all types appear in the literature. In practice, however, ecosystem modelers have focused upon particular types of model constructions. Most analyses seem to treat compartments which are nonsegregated (populations or trophic levels) and homogeneous. The accompanying mathematics is, for the most part, deterministic and autonomous. Despite the enormous effort which has gone into such ecosystem modeling, there remains a paucity of models which meets the rigorous &! validation criteria which might be applied to a model of a mechanical system. Most ecosystem models are short on prediction ability. Even some classical examples, such as the Lotka-Volterra predator-prey scheme, have not spawned validated examples.
Resumo:
7 p.
Resumo:
射频识别技术(Radio Frequency Identification, RFID)作为采集与处理信息的高新技术和信息化标准的基础,被列为本世纪十大重要技术之一。但是,RFID技术的大规模实际应用仍处于探索阶段,RFID系统的应用基础技术还存在着大量尚未解决的关键问题,其中RFID系统优化是RFID技术研究和应用的重要课题。由于RFID系统本身的动态性和不确定性, RFID系统优化面对的一般是非线性、多目标、大规模的复杂优化问题,传统的数学优化算法在处理这些问题时,存在困难。为此,研究新的优化算法成为RFID技术实际应用和理论研究中必须解决的课题。 智能计算方法是求解复杂RFID系统优化问题的一种可供选择的算法。智能计算作为一个新兴领域,其发展已引起了多个学科领域研究人员的关注,目前已经成为人工智能、经济、社会、生物等交叉学科的研究热点和前沿领域。智能计算的各类算法已在传统NP问题求解及诸多实际应用领域中展现出其优异的性能和巨大的发展潜力。 本文旨在对RFID系统的各种优化问题进行深入研究和探讨,面向RFID技术的实际应用需求构建其优化模型,并基于智能计算思想设计能够有效求解这些复杂模型的新型智能优化算法。具体研究内容包括: 首先,进行了RFID读写器网络的调度问题研究。在深入分析RFID网络中读写器冲突类型和成因的基础上,考虑RFID网络中的读写器冲突约束,以最小化系统中的频道数量、时隙分配以及总处理时间建立了RFID读写器网络调度的数学优化模型。从生物学的角度出发提出基于生态捕食模型的改进PSO算法(Particle Swarm Optimizer based on Predator-prey Coevolution, PSOPC),在一定程度上解决了PSO算法在迭代后期随着多样性丧失而陷入局部最优的缺点。应用PSOPC设计了求解RFID读写器网络调度模型的智能求解算法,分别给出算法的求解框架、关键步骤的实现机制。通过在不同规模的RFID读写器网络上进行实例仿真,验证了算法的有效性和模型的正确性。 其次,进行了基于菌群自适应觅食算法RFID网络规划问题的研究。考虑RFID系统在不同应用环境下的系统需求,建立了RFID网络规化的数学模型,其目标函数分别为:RFID网络标签覆盖率的最大化目标函数、RFID读写器冲突的最小化目标函数、RFID网络运行的经济效益最大化目标函数、RFID网络运行的负载平衡目标函数以及同时考虑全局目标的混合目标函数。将自然界生物觅食所采用的自适应搜索策略与细菌的趋化行为和群体感应机制相集成,提出了适合求解复杂RFID网络规划问题的菌群自适应觅食算法(Adaptive Bacterial Foraging Optimization, ABFO)。通过仿真实验基于ABFO算法分别对RFID网络规划模型中的五个目标函数进行了实例求解和分析,测试结果与标准PSO算法和遗传算法进行了比较分析。 再次,进行了基于系统智能方法的RFID网络规划分布式决策模型研究。采用分布式决策的思想建立了RFID网络规划的层次模型,在一定程度上缓解、分散了RFID网络规划问题的复杂性,以解决具有混合变量(包括离散变量和连续变量)的多目标RFID网络规划问题。针对层次模型求解的复杂性,以复杂适应系统理论为指导思想设计了一种新型系统智能优化算法对RFID网络规划的层次模型进行求解。系统智能算法将群体智能中的单层群体系统概念扩展为多层涌现系统,仿真实验表明新提出的算法显著提高了智能计算方法的寻优能力,以及算法的适应性、鲁棒性和平衡性等性能。 最后,进行了RFID网络目标跟踪系统中的数据融合研究。以基于RFID技术的目标定位与跟踪系统为应用背景,提出了基于模糊聚类方法的多RFID读写器数据融合模型框架。通过深入分析蜜蜂采蜜的基本生物学规律,对蜜蜂的个体行为及群体行为进行模拟,提出了一类新型群体智能优化算法-蜂群优化算法(Bee Swarm Optimization, BSO),并将BSO算法嵌入RFID目标定位跟踪系统,作为其模糊聚类的基本算法。仿真研究表明,提出的融合模型能够有效的过滤读写器对跟踪目标的错误监测数据,显著提高目标定位与跟踪的精度。
Resumo:
Western rock lobsters, Panulirus cygnus are an abundant benthic consumer distributed along the temperate west coast of Australia and constitute the largest single species fishery in Australia. As a dominant consumer, it is important to understand their predator-prey interactions as they can potentially exert strong trophic effects, and may influence ecosystem function as seen in other spiny lobster species. While previous field studies have focused on the diet composition of P. cygnus, this study investigated their preference for various benthic invertebrate prey to better understand the likely predator-prey interactions of P. cygnus. Prey preferences of small sub-legal juvenile lobsters, as well as medium and large legal-sized mature lobsters were investigated using laboratory feeding trials to identify size-associated differences in lobster prey preference. Handling time and diet quality were investigated to estimate energetic cost and gain from consuming different prey which may explain prey choice by lobsters. It was found that large lobsters preferred crabs and mussels while medium and small lobsters preferred crabs over mussels, gastropods, and sea urchins. This suggests that strong predator-prey interactions between P. cygnus and crabs may occur in the wild.
Resumo:
Trophic scaling models describe how topological food-web properties such as the number of predator prey links scale with species richness of the community. Early models predicted that either the link density (i.e. the number of links per species) or the connectance (i.e. the linkage probability between any pair of species) is constant across communities. More recent analyses, however, suggest that both these scaling models have to be rejected, and we discuss several hypotheses that aim to explain the scale dependence of these complexity parameters. Based on a recent, highly resolved food-web compilation, we analysed the scaling behaviour of 16 topological parameters and found significant power law scaling relationships with diversity (i.e. species richness) and complexity (i.e. connectance) for most of them. These results illustrate the lack of universal constants in food-web ecology as a function of diversity or complexity. Nonetheless, our power law scaling relationships suggest that fundamental processes determine food-web topology, and subsequent analyses demonstrated that ecosystem-specific differences in these relationships were of minor importance. As such, these newly described scaling relationships provide robust and testable cornerstones for future structural food-web models.
Resumo:
The influence of predation in structuring ecological communities can be informed by examining the shape and magnitude of the functional response of predators towards prey. We derived functional responses of the ubiquitous intertidal amphipod Echinogammarus marinus towards one of its preferred prey species, the isopod Jaera nordmanni. First, we examined the form of the functional response where prey were replaced following consumption, as compared to the usual experimental design where prey density in each replicate is allowed to deplete. E. marinus exhibited Type II functional responses, i.e. inversely density-dependent predation of J. nordmanni that increased linearly with prey availability at low densities, but decreased with further prey supply. In both prey replacement and non-replacement experiments, handling times and maximum feeding rates were similar. The non-replacement design underestimated attack rates compared to when prey were replaced. We then compared the use of Holling’s disc equation (assuming constant prey density) with the more appropriate Rogers’ random predator equation (accounting for prey depletion) using the prey non-replacement data. Rogers’ equation returned significantly greater attack rates but lower maximum feeding rates, indicating that model choice has significant implications for parameter estimates. We then manipulated habitat complexity and found significantly reduced predation by the amphipod in complex as opposed to simple habitat structure. Further, the functional response changed from a Type II in simple habitats to a sigmoidal, density-dependent Type III response in complex habitats, which may impart stability on the predator−prey interaction. Enhanced habitat complexity returned significantly lower attack rates, higher handling times and lower maximum feeding rates. These findings illustrate the sensitivity of the functional response to variations in prey supply, model selection and habitat complexity and, further, that E. marinus could potentially determine the local exclusion and persistence of prey through habitat-mediated changes in its predatory functional responses.
Resumo:
Food webs are the complex networks of trophic interactions that stoke the metabolic fires of life. To understand what structures these interactions in natural communities, ecologists have developed simple models to capture their main architectural features. However, apparently realistic food webs can be generated by models invoking either predator-prey body-size hierarchies or evolutionary constraints as structuring mechanisms. As a result, this approach has not conclusively revealed which factors are the most important. Here we cut to the heart of this debate by directly comparing the influence of phylogeny and body size on food web architecture. Using data from 13 food webs compiled by direct observation, we confirm the importance of both factors. Nevertheless, phylogeny dominates in most networks. Moreover, path analysis reveals that the size-independent direct effect of phylogeny on trophic structure typically outweighs the indirect effect that could be captured by considering body size alone. Furthermore, the phylogenetic signal is asymmetric: closely related species overlap in their set of consumers far more than in their set of resources. This is at odds with several food web models, which take only the view-point of consumers when assigning interactions. The echo of evolutionary history clearly resonates through current food webs, with implications for our theoretical models and conservation priorities.
Resumo:
Using the foraging movements of an insectivorous bat, Myotis mystacinus, we describe temporal switching of foraging behaviour in response to resource availability. These observations conform to predictions of optimized search under the Lévy flight paradigm. However, we suggest that this occurs as a result of a preference behaviour and knowledge of resource distribution. Preferential behaviour and knowledge of a familiar area generate distinct movement patterns as resource availability changes on short temporal scales. The behavioural response of predators to changes in prey fields can elicit different functional responses, which are considered to be central in the development of stable predator-prey communities. Recognizing how the foraging movements of an animal relate to environmental conditions also elucidates the evolution of optimized search and the prevalence of discrete strategies in natural systems. Applying techniques that use changes in the frequency distribution of movements facilitates exploration of the processes that underpin behavioural changes. © 2012 The Author(s) Published by the Royal Society. All rights reserved.