41 resultados para Prévisions
Resumo:
Les réseaux de capteurs sont formés d’un ensemble de dispositifs capables de prendre individuellement des mesures d’un environnement particulier et d’échanger de l’information afin d’obtenir une représentation de haut niveau sur les activités en cours dans la zone d’intérêt. Une telle détection distribuée, avec de nombreux appareils situés à proximité des phénomènes d’intérêt, est pertinente dans des domaines tels que la surveillance, l’agriculture, l’observation environnementale, la surveillance industrielle, etc. Nous proposons dans cette thèse plusieurs approches pour effectuer l’optimisation des opérations spatio-temporelles de ces dispositifs, en déterminant où les placer dans l’environnement et comment les contrôler au fil du temps afin de détecter les cibles mobiles d’intérêt. La première nouveauté consiste en un modèle de détection réaliste représentant la couverture d’un réseau de capteurs dans son environnement. Nous proposons pour cela un modèle 3D probabiliste de la capacité de détection d’un capteur sur ses abords. Ce modèle inègre également de l’information sur l’environnement grâce à l’évaluation de la visibilité selon le champ de vision. À partir de ce modèle de détection, l’optimisation spatiale est effectuée par la recherche du meilleur emplacement et l’orientation de chaque capteur du réseau. Pour ce faire, nous proposons un nouvel algorithme basé sur la descente du gradient qui a été favorablement comparée avec d’autres méthodes génériques d’optimisation «boites noires» sous l’aspect de la couverture du terrain, tout en étant plus efficace en terme de calculs. Une fois que les capteurs placés dans l’environnement, l’optimisation temporelle consiste à bien couvrir un groupe de cibles mobiles dans l’environnement. D’abord, on effectue la prédiction de la position future des cibles mobiles détectées par les capteurs. La prédiction se fait soit à l’aide de l’historique des autres cibles qui ont traversé le même environnement (prédiction à long terme), ou seulement en utilisant les déplacements précédents de la même cible (prédiction à court terme). Nous proposons de nouveaux algorithmes dans chaque catégorie qui performent mieux ou produits des résultats comparables par rapport aux méthodes existantes. Une fois que les futurs emplacements de cibles sont prédits, les paramètres des capteurs sont optimisés afin que les cibles soient correctement couvertes pendant un certain temps, selon les prédictions. À cet effet, nous proposons une méthode heuristique pour faire un contrôle de capteurs, qui se base sur les prévisions probabilistes de trajectoire des cibles et également sur la couverture probabiliste des capteurs des cibles. Et pour terminer, les méthodes d’optimisation spatiales et temporelles proposées ont été intégrées et appliquées avec succès, ce qui démontre une approche complète et efficace pour l’optimisation spatio-temporelle des réseaux de capteurs.
Resumo:
Cette thèse s’inscrit dans le contexte d’une optimisation industrielle et économique des éléments de structure en BFUP permettant d’en garantir la ductilité au niveau structural, tout en ajustant la quantité de fibres et en optimisant le mode de fabrication. Le modèle développé décrit explicitement la participation du renfort fibré en traction au niveau local, en enchaînant une phase de comportement écrouissante suivie d’une phase adoucissante. La loi de comportement est fonction de la densité, de l’orientation des fibres vis-à-vis des directions principales de traction, de leur élancement et d’autres paramètres matériaux usuels liés aux fibres, à la matrice cimentaire et à leur interaction. L’orientation des fibres est prise en compte à partir d’une loi de probabilité normale à une ou deux variables permettant de reproduire n’importe quelle orientation obtenue à partir d’un calcul représentatif de la mise en oeuvre du BFUP frais ou renseignée par analyse expérimentale sur prototype. Enfin, le modèle reproduit la fissuration des BFUP sur le principe des modèles de fissures diffuses et tournantes. La loi de comportement est intégrée au sein d’un logiciel de calcul de structure par éléments finis, permettant de l’utiliser comme un outil prédictif de la fiabilité et de la ductilité globale d’éléments en BFUP. Deux campagnes expérimentales ont été effectuées, une à l’Université Laval de Québec et l’autre à l’Ifsttar, Marne-la-Vallée. La première permet de valider la capacité du modèle reproduire le comportement global sous des sollicitations typiques de traction et de flexion dans des éléments structurels simples pour lesquels l’orientation préférentielle des fibres a été renseignée par tomographie. La seconde campagne expérimentale démontre les capacités du modèle dans une démarche d’optimisation, pour la fabrication de plaques nervurées relativement complexes et présentant un intérêt industriel potentiel pour lesquels différentes modalités de fabrication et des BFUP plus ou moins fibrés ont été envisagés. Le contrôle de la répartition et de l’orientation des fibres a été réalisé à partir d’essais mécaniques sur prélèvements. Les prévisions du modèle ont été confrontées au comportement structurel global et à la ductilité mis en évidence expérimentalement. Le modèle a ainsi pu être qualifié vis-à-vis des méthodes analytiques usuelles de l’ingénierie, en prenant en compte la variabilité statistique. Des pistes d’amélioration et de complément de développement ont été identifiées.
Resumo:
Au Canada, les avalanches constituent le géorisque le plus dangereux en période hivernale. On enregistre annuellement d’importants coûts économiques et sociaux associés aux impacts de ce phénomène naturel. Par exemple, la fermeture de routes en cas de risque d’avalanche est estimée à 5 millions de dollars (Jamieson et Stethem, 2002). La prévision des avalanches est, de nos jours, la meilleure méthode afin d’éviter ces coûts. Au Canada, cela s’effectue de façon ponctuelle à l’aide de méthodes manuelles tel que le test de compression (CAA, 2014). Les modèles de simulation du couvert neigeux permettent d’étendre les prévisions à l’ensemble d’une région et ainsi, atteindre certains lieux difficilement accessibles pour l’homme. On tente actuellement d’adapter le modèle SNOWPACK aux conditions canadiennes et plusieurs études ont eu pour but d’améliorer les simulations produites par celui-ci. Cette étude vise donc également l’amélioration des simulations par l’intégration des paramètres de végétation. L’objectif de l’étude est de paramétrer, pour la première fois, le module de végétation de SNOWPACK avec les données récoltées dans la réserve faunique des Chic-Chocs. Nous pourrons ainsi évaluer l’impact de la végétation sur la modélisation du couvert nival. Nous avons donc, lors de sorties de terrain, recueillis les données de neige et de végétation au niveau de quatre sites d’étude. Nous avons par la suite réalisé les simulations avec SNOWPACK et comparer les résultats des simulations avec et sans végétation aux données de terrain. L’étude nous révèle que le modèle diminue la quantité de neige au sol ainsi que la densité du manteau neigeux en présence de végétation. De plus nous avons pu constater que l’inclusion du module de végétation permet d’obtenir des données qui se rapprochent davantage de ce qui a été observé sur le terrain.
Resumo:
L'Université Bishop's de Lennoxville est née d'un défi de l'anglicanisme de s'implanter dans une région colonisée par des Américains dans une province en majeure partie francophone. Troisième plus ancienne université du Québec, Bishop's célèbrera en décembre de cette année 1993, son 150 ième anniversaire. Bien qu'elle soit petite, avec un effectif de seulement 2000 étudiants, Bishop's quand même réussît à attirer des étudiants non seulement du Québec mais de toutes les autres provinces ainsi que de l'étranger. Le cas de Bishop's est unique étant donné qu'elle est la seule université anglophone du Québec établie dans une région rurale. De plus, n'offrant que des programmes de premier cycle, elle perd le pouvoir d'attraction des programmes de deuxième et troisième cycles ainsi que celui des facultés des professions libérales telles que le droit, le génie ou la médecine. Les responsables de l'université s'interrogent sur les raisons qui aujourd'hui amènent un étudiant à choisir Bishop's plutôt qu'une autre université pour entreprendre ses études. Leur problème n'est pas autant d'augmenter le nombre total d'étudiants inscrits que surtout celui de changer la composition du corps estudiantin afin qu'un plus grand pourcentage provienne de la province du Québec. Conscients de l'énorme potentiel que représente le marché francophone, ils voudraient tout en maintenant la participation présente des anglophones du Québec, développer des stratégies qui leur permettront d'attirer un plus grand nombre d'étudiants francophones. Les mesures prises par l'administration durant les deux dernières années académiques ont été d'accorder des proportions de plus en plus importantes du budget de recrutement aux cegeps francophones. Confrontés à notre tour à ce problème, nous avons décidé de le résoudre d'une manière plus globale et plus approfondie. Une revue préliminaire de la littérature s'est avérée insuffisante. La recherche dans ce domaine foisonne en études de préférences visant surtout à faire des prévisions au sujet des admissions futures dans le but d'attirer le plus de candidats possible sans se soucier de l'origine régionale, ethnique ou linguistique des étudiants. Afin d'attirer tel groupe d'étudiants plutôt qu'un autre, les responsables devraient tout d'abord enquêter sur les attributs d'une université qui sont importants pour chaque groupe et déterminer si ces attributs diffèrent d'un groupe à un autre. C'est pour cette raison que nous avons mené auprès des étudiants de Bishop's une étude de préférences afin de trouver le message qui doit être véhiculé lors des activités de recrutement. De plus, comme mentionné plus haut, les responsables consacrent une partie du budget à ces activités. Apporter un changement au corps étudiant devient par conséquent un problème de gestion des efforts de recrutement. Nous avons pour cela développé un modèle basé sur une fonction de réponse visant à établir une relation entre les demandes d'inscriptions et différentes autres variables telles que le potentiel du marché, les sommes allouées au recrutement, la distance qui sépare la région d'origine de Bishop's, et enfin un effet de langue qui différencierait la réponse des francophones de celle des anglophones. Ce modèle permet d'élaborer une règle de répartition du budget relativement facile à mettre en oeuvre et qui aiderait les responsables à optimiser la composition du corps étudiant.
Resumo:
Les enjeux hydrologiques modernes, de prévisions ou liés aux changements climatiques, forcent l’exploration de nouvelles approches en modélisation afin de combler les lacunes actuelles et d’améliorer l’évaluation des incertitudes. L’approche abordée dans ce mémoire est celle du multimodèle (MM). L’innovation se trouve dans la construction du multimodèle présenté dans cette étude : plutôt que de caler individuellement des modèles et d’utiliser leur combinaison, un calage collectif est réalisé sur la moyenne des 12 modèles globaux conceptuels sélectionnés. Un des défis soulevés par cette approche novatrice est le grand nombre de paramètres (82) qui complexifie le calage et l’utilisation, en plus d’entraîner des problèmes potentiels d’équifinalité. La solution proposée dans ce mémoire est une analyse de sensibilité qui permettra de fixer les paramètres peu influents et d’ainsi réduire le nombre de paramètres total à caler. Une procédure d’optimisation avec calage et validation permet ensuite d’évaluer les performances du multimodèle et de sa version réduite en plus d’en améliorer la compréhension. L’analyse de sensibilité est réalisée avec la méthode de Morris, qui permet de présenter une version du MM à 51 paramètres (MM51) tout aussi performante que le MM original à 82 paramètres et présentant une diminution des problèmes potentiels d’équifinalité. Les résultats du calage et de la validation avec le « Split-Sample Test » (SST) du MM sont comparés avec les 12 modèles calés individuellement. Il ressort de cette analyse que les modèles individuels, composant le MM, présentent de moins bonnes performances que ceux calés indépendamment. Cette baisse de performances individuelles, nécessaire pour obtenir de bonnes performances globales du MM, s’accompagne d’une hausse de la diversité des sorties des modèles du MM. Cette dernière est particulièrement requise pour les applications hydrologiques nécessitant une évaluation des incertitudes. Tous ces résultats mènent à une amélioration de la compréhension du multimodèle et à son optimisation, ce qui facilite non seulement son calage, mais également son utilisation potentielle en contexte opérationnel.
Resumo:
L’entreprise Rio Tinto effectue la gestion du système hydrique de la rivière Nechako, situé en Colombie-Britannique (Canada), à partir de règles de gestion optimisées à l’aide d’un algorithme de programmation dynamique stochastique (PDS) et de scénarios d’apports historiques. Les récents développements en recherche opérationnelle tendent à démontrer que la mise à jour des règles de gestion en mode prévisionnel permet d’améliorer la performance des règles de gestion lorsque des prévisions d’ensemble sont utilisées pour mieux cerner les incertitudes associées aux apports à venir. La modélisation hydrologique permet de suivre l’évolution d’un ensemble de processus hydrologiques qui varient dans le temps et dans l’espace (réserve de neige, humidité du sol, etc.). L’utilisation de modèles hydrologiques, en plus d’offrir la possibilité de construire des prévisions d’ensemble qui tiennent compte de l’ensemble des processus simulés, permet de suivre l’évolution de variables d’état qui peuvent être utilisées à même l’algorithme d’optimisation pour construire les probabilités de transition utiles à l’évaluation de la valeur des décisions futures. À partir d’un banc d’essais numériques dans lequel le comportement du bassin versant de la rivière Nechako est simulé à l’aide du modèle hydrologique CEQUEAU, les résultats du présent projet démontrent que la mise à jour des règles avec l’algorithme de PDS en mode prévisionnel permet une amélioration de la gestion du réservoir Nechako lorsque comparée aux règles optimisées avec l’algorithme en mode historique. Le mode prévisionnel utilisant une variable hydrologique combinant un modèle autorégressif d’ordre 5 (AR5) et la valeur maximale de l’équivalent en eau de la neige (ÉENM) a permis de réduire les déversements non-productifs et les inondations tout en maintenant des productions similaires à celles obtenues à l’aide de règles optimisées en mode historique utilisant l’ÉENM comme variable hydrologique. De plus, les résultats du projet démontrent que l’utilisation de prévisions hydrologiques d’ensemble en mode historique pour construire une variable hydrologique permettant d’émettre une prévision du volume d’apport médian pour les huit mois à venir (PVAM) ne permettait pas d’obtenir des résultats de gestion supérieurs à ceux obtenus avec la variable d’ÉENM.
Resumo:
Ce mémoire de maîtrise traite de la théorie de la ruine, et plus spécialement des modèles actuariels avec surplus dans lesquels sont versés des dividendes. Nous étudions en détail un modèle appelé modèle gamma-omega, qui permet de jouer sur les moments de paiement de dividendes ainsi que sur une ruine non-standard de la compagnie. Plusieurs extensions de la littérature sont faites, motivées par des considérations liées à la solvabilité. La première consiste à adapter des résultats d’un article de 2011 à un nouveau modèle modifié grâce à l’ajout d’une contrainte de solvabilité. La seconde, plus conséquente, consiste à démontrer l’optimalité d’une stratégie de barrière pour le paiement des dividendes dans le modèle gamma-omega. La troisième concerne l’adaptation d’un théorème de 2003 sur l’optimalité des barrières en cas de contrainte de solvabilité, qui n’était pas démontré dans le cas des dividendes périodiques. Nous donnons aussi les résultats analogues à l’article de 2011 en cas de barrière sous la contrainte de solvabilité. Enfin, la dernière concerne deux différentes approches à adopter en cas de passage sous le seuil de ruine. Une liquidation forcée du surplus est mise en place dans un premier cas, en parallèle d’une liquidation à la première opportunité en cas de mauvaises prévisions de dividendes. Un processus d’injection de capital est expérimenté dans le deuxième cas. Nous étudions l’impact de ces solutions sur le montant des dividendes espérés. Des illustrations numériques sont proposées pour chaque section, lorsque cela s’avère pertinent.
Resumo:
Cette thèse développe des méthodes bootstrap pour les modèles à facteurs qui sont couram- ment utilisés pour générer des prévisions depuis l'article pionnier de Stock et Watson (2002) sur les indices de diffusion. Ces modèles tolèrent l'inclusion d'un grand nombre de variables macroéconomiques et financières comme prédicteurs, une caractéristique utile pour inclure di- verses informations disponibles aux agents économiques. Ma thèse propose donc des outils éco- nométriques qui améliorent l'inférence dans les modèles à facteurs utilisant des facteurs latents extraits d'un large panel de prédicteurs observés. Il est subdivisé en trois chapitres complémen- taires dont les deux premiers en collaboration avec Sílvia Gonçalves et Benoit Perron. Dans le premier article, nous étudions comment les méthodes bootstrap peuvent être utilisées pour faire de l'inférence dans les modèles de prévision pour un horizon de h périodes dans le futur. Pour ce faire, il examine l'inférence bootstrap dans un contexte de régression augmentée de facteurs où les erreurs pourraient être autocorrélées. Il généralise les résultats de Gonçalves et Perron (2014) et propose puis justifie deux approches basées sur les résidus : le block wild bootstrap et le dependent wild bootstrap. Nos simulations montrent une amélioration des taux de couverture des intervalles de confiance des coefficients estimés en utilisant ces approches comparativement à la théorie asymptotique et au wild bootstrap en présence de corrélation sérielle dans les erreurs de régression. Le deuxième chapitre propose des méthodes bootstrap pour la construction des intervalles de prévision permettant de relâcher l'hypothèse de normalité des innovations. Nous y propo- sons des intervalles de prédiction bootstrap pour une observation h périodes dans le futur et sa moyenne conditionnelle. Nous supposons que ces prévisions sont faites en utilisant un ensemble de facteurs extraits d'un large panel de variables. Parce que nous traitons ces facteurs comme latents, nos prévisions dépendent à la fois des facteurs estimés et les coefficients de régres- sion estimés. Sous des conditions de régularité, Bai et Ng (2006) ont proposé la construction d'intervalles asymptotiques sous l'hypothèse de Gaussianité des innovations. Le bootstrap nous permet de relâcher cette hypothèse et de construire des intervalles de prédiction valides sous des hypothèses plus générales. En outre, même en supposant la Gaussianité, le bootstrap conduit à des intervalles plus précis dans les cas où la dimension transversale est relativement faible car il prend en considération le biais de l'estimateur des moindres carrés ordinaires comme le montre une étude récente de Gonçalves et Perron (2014). Dans le troisième chapitre, nous suggérons des procédures de sélection convergentes pour les regressions augmentées de facteurs en échantillons finis. Nous démontrons premièrement que la méthode de validation croisée usuelle est non-convergente mais que sa généralisation, la validation croisée «leave-d-out» sélectionne le plus petit ensemble de facteurs estimés pour l'espace généré par les vraies facteurs. Le deuxième critère dont nous montrons également la validité généralise l'approximation bootstrap de Shao (1996) pour les regressions augmentées de facteurs. Les simulations montrent une amélioration de la probabilité de sélectionner par- cimonieusement les facteurs estimés comparativement aux méthodes de sélection disponibles. L'application empirique revisite la relation entre les facteurs macroéconomiques et financiers, et l'excès de rendement sur le marché boursier américain. Parmi les facteurs estimés à partir d'un large panel de données macroéconomiques et financières des États Unis, les facteurs fortement correlés aux écarts de taux d'intérêt et les facteurs de Fama-French ont un bon pouvoir prédictif pour les excès de rendement.
Resumo:
Tese (doutorado)—Universidade de Brasília, Centro de Desenvolvimento Sustentável, 2015.
Resumo:
De par leur nature scientifique, les sciences économiques visent, entre autre, à observer, qualifier, ainsi que quantifier des phénomènes économiques afin de pouvoir en dégager diverses prévisions. Ce mémoire se penche sur ces prévisions et, plus particulièrement, sur les facteurs pouvant biaiser les prévisionnistes au niveau comportemental en référant à l’effet d’ancrage, un biais propre à l’économie comportementale – une sous-discipline des sciences économiques. Il sera donc question de comprendre, par une analyse selon la discipline que représente l’économie comportementale, ce qui peut les affecter, avec un accent mis sur l’effet d’ancrage plus précisément. L’idée générale de ce dernier est qu’un agent peut être biaisé inconsciemment par la simple connaissance d’une valeur précédente lorsqu’il est demandé de faire une estimation ultérieure. De cette façon, une analyse des salaires des joueurs de la Ligne Nationale de Hockey (NHL) selon leurs performances passées et leurs caractéristiques personnelles, de 2007 à 2016, a été réalisée dans ce travail afin d’en dégager de possibles effets d’ancrage. Il est alors possible de constater que les directeurs généraux des équipes de la ligue agissent généralement de façon sensible et rationnelle lorsque vient le temps d’octroyer des contrats à des joueurs mais, néanmoins, une anomalie persiste lorsqu’on porte attention au rang auquel un joueur a été repêché. Dans un tel contexte, il semble pertinent de se référer à l’économie comportementale afin d’expliquer pourquoi le rang au repêchage reste une variable significative huit ans après l’entrée d’un joueur dans la NHL et qu’elle se comporte à l’inverse de ce que prévoit la théorie à ce sujet.
Resumo:
De par leur nature scientifique, les sciences économiques visent, entre autre, à observer, qualifier, ainsi que quantifier des phénomènes économiques afin de pouvoir en dégager diverses prévisions. Ce mémoire se penche sur ces prévisions et, plus particulièrement, sur les facteurs pouvant biaiser les prévisionnistes au niveau comportemental en référant à l’effet d’ancrage, un biais propre à l’économie comportementale – une sous-discipline des sciences économiques. Il sera donc question de comprendre, par une analyse selon la discipline que représente l’économie comportementale, ce qui peut les affecter, avec un accent mis sur l’effet d’ancrage plus précisément. L’idée générale de ce dernier est qu’un agent peut être biaisé inconsciemment par la simple connaissance d’une valeur précédente lorsqu’il est demandé de faire une estimation ultérieure. De cette façon, une analyse des salaires des joueurs de la Ligne Nationale de Hockey (NHL) selon leurs performances passées et leurs caractéristiques personnelles, de 2007 à 2016, a été réalisée dans ce travail afin d’en dégager de possibles effets d’ancrage. Il est alors possible de constater que les directeurs généraux des équipes de la ligue agissent généralement de façon sensible et rationnelle lorsque vient le temps d’octroyer des contrats à des joueurs mais, néanmoins, une anomalie persiste lorsqu’on porte attention au rang auquel un joueur a été repêché. Dans un tel contexte, il semble pertinent de se référer à l’économie comportementale afin d’expliquer pourquoi le rang au repêchage reste une variable significative huit ans après l’entrée d’un joueur dans la NHL et qu’elle se comporte à l’inverse de ce que prévoit la théorie à ce sujet.