880 resultados para Power-generation systems
Resumo:
This paper presents a methodology for the study of a molten carbonate fuel cell co-generation system. This system is applied to a dairy industry of medium size that typically demands 2100 kW of electricity, 8500 kg/h of saturated steam (P = 1.08 MPa) and 2725 kW of cold water production. Depending on the associated recuperation equipment, the co-generation system permits the recovery of waste heat, which can be used for the production of steam, hot and cold water, hot and cold air. In this study, a comparison is made between two configurations of fuel cell co-generation systems (FCCS). The plant performance has been evaluated on the basis of fuel utilisation efficiency and each system component evaluated on the basis of second law efficiency. The energy analysis presented shows a fuel utilisation efficiency of about 87% and exergy analysis shows that the irreversibilities in the combustion chamber of the plant are significant. Further, the payback period estimated for the fuel cell investment between US$ 1000 and US$ 1500/k-W is about 3 and 6 years, respectively. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
This work presents the stage integration in power electronics converters as a suitable solution for solar photovoltaic inverters. The rated voltages available in Photovoltaic (PV) modules have usually low values for applications such as regulated output voltages in stand-alone or grid-connected configurations. In these cases, a boost stage or a transformer will be necessary. Transformers have low efficiencies, heavy weights and have been used only when galvanic isolation is mandatory. Furthermore, high-frequency transformers increase the converter complexity. Therefore, the most usual topologies use a boost stage and one inverter stage cascaded. However, the complexity, size, weight, cost and lifetime might be improved considering the integration of both stages. These are the expected features to turn attractive this kind of integrated structures. Therefore, some integrated converters are analyzed and compared in this paper in order to support future evaluations and trends for low power single-phase inverters for PV systems. © 2011 IEEE.
Resumo:
The objective of the present article is to assess and compare the performance of electricity generation systems integrated with downdraft biomass gasifiers for distributed power generation. A model for estimating the electric power generation of internal combustion engines and gas turbines powered by syngas was developed. First, the model determines the syngas composition and the lower heating value; and second, these data are used to evaluate power generation in Otto, Diesel, and Brayton cycles. Four synthesis gas compositions were tested for gasification with: air; pure oxygen; 60% oxygen with 40% steam; and 60% air with 40% steam. The results show a maximum power ratio of 0.567 kWh/Nm(3) for the gas turbine system, 0.647 kWh/Nm(3) for the compression ignition engine, and 0.775 kWh/Nm(3) for the spark-ignition engine while running on synthesis gas which was produced using pure oxygen as gasification agent. When these three systems run on synthesis gas produced using atmospheric air as gasification agent, the maximum power ratios were 0.274 kWh/Nm(3) for the gas turbine system, 0.302 kWh/Nm(3) for CIE, and 0.282 kWh/Nm(3) for SIE. The relationship between power output and synthesis gas flow variations is presented as is the dependence of efficiency on compression ratios. Since the maximum attainable power ratio of CIE is higher than that of SIE for gasification with air, more research should be performed on utilization of synthesis gas in CIE. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Sterile coal is a low-value residue associated to the coal extraction and mining activity. According to the type and origin of the coal bed configuration, sterile coal production can mainly vary on quantity, calorific value and presence of sulphur compounds. In addition, the potential availability of sterile coal within Spain is apparently high and its contribution to the local power generation would be of interest playing a significant role. The proposed study evaluates the availability and deployment of gasification technologies to drive clean electricity generation from waste coal and sterile rock coal, incorporating greenhouse gas emission mitigation systems, like CO2, H2S and NOx removal systems. It establishes the target facility and its conceptual basic design proposal. The syngas obtained after the gasification of sterile coal is processed through specific conditioning units before entering into the combustion chamber of a gas turbine. Flue gas leaving the gas turbine is ducted to a heat recovery steam generation boiler; the steam produced within the boilerdrives a steam turbine. The target facility resembles a singular Integrated Gasification in Combined Cycle (IGCC) power station. The evaluation of the conceptual basic design according to the power output set for a maximum sterile contribution, established that rates over 95% H2S and 90% CO2 removal can be achieved. Noticeable decrease of NOx compounds can be also achieved by the use of commercial technology. A techno-economic approach of the conceptual basic design is made evaluating the integration of potential unitsand their implementation within the target facility aiming toachieve clean power generation. The criterion to be compliant with the most restrictive regulation regarding environmental emissions is setting to carry out this analysis.
Resumo:
A power generation scheme based on bare electrodynamic tethers (EDT), working in passive mode is investigated for the purpose of supplying power to scientific missions at Saturn. The system employs a spinning EDT on a lowaltitude polar orbit which permits to efficiently convert plasmasphere energy into useful power. After optimizing the tether design for power generation we compute the supplied power along the orbit and the impact of the Lorentz force on the orbital elements as function of the tether and orbit characteristics. Although uncertainties in the current ionosphere density modeling strongly affect the performance of the system the peak power density of the EDT appears be greater than conventional power systems.
Resumo:
"December 1963."
Resumo:
The PMSG-based wind power generation system protection is presented in this paper. For large-scale systems, a voltagesource converter rectifier is included. Protection circuits for this topology are studied with simulation results for cable permanent fault conditions. These electrical protection methods are all in terms of dumping redundant energy resulting from disrupted path of power delivery. Pitch control of large-scale wind turbines are considered for effectively reducing rotor shaft overspeed. Detailed analysis and calculation of damping power and resistances are presented. Simulation results including fault overcurrent, DC-link overvoltage and wind turbine overspeed are shown to illustrate the system responses under different protection schemes to compare their application and effectiveness.
Resumo:
This paper presents a reliability-based reconfiguration methodology for power distribution systems. Probabilistic reliability models of the system components are considered and Monte Carlo method is used while evaluating the reliability of the distribution system. The reconfiguration is aimed at maximizing the reliability of the power supplied to the customers. A binary particle swarm optimization (BPSO) algorithm is used as a tool to determine the optimal configuration of the sectionalizing and tie switches in the system. The proposed methodology is applied on a modified IEEE 13-bus distribution system.
Resumo:
Electromagnetic compatibility of power electronic systems becomes an engineering discipline and it should be considered at the beginning stage of a design. Thus, a power electronics design becomes more complex and challenging and it requires a good communication between EMI and Power electronics experts. Three major issues in designing a power electronic system are Losses, EMI and Harmonics. These issues affect system cost, size, efficiency and quality and it is a tradeoff between these factors when we design a power converter.
Resumo:
Fault tree analysis (FTA) is presented to model the reliability of a railway traction power system in this paper. First, the construction of fault tree is introduced to integrate components in traction power systems into a fault tree; then the binary decision diagram (BDD) method is used to evaluate fault trees qualitatively and quantitatively. The components contributing to the reliability of overall system are identified with their relative importance through sensitivity analysis. Finally, an AC traction power system is evaluated by the proposed methods.
Resumo:
This study analyses and compares the cost efficiency of Japanese steam power generation companies using the fixed and random Bayesian frontier models. We show that it is essential to account for heterogeneity in modelling the performance of energy companies. Results from the model estimation also indicate that restricting CO2 emissions can lead to a decrease in total cost. The study finally discusses the efficiency variations between the energy companies under analysis, and elaborates on the managerial and policy implications of the results.
Resumo:
In this paper, the random stochastic frontier model is used to estimate the technical efficiency of Japanese steam power generation companies taking into regulation and pollution. The companies are ranked according to their productivity for the period 1976-2003 and homogenous and heterogeneous variables in the cost function are disentangled. Policy implication is derived.
Resumo:
Unidirectional inductive power transfer (UIPT) systems allow loads to consume power while bidirectional IPT (BIPT) systems are more suitable for loads requiring two way power flow such as vehicle to grid (V2G) applications with electric vehicles (EVs). Many attempts have been made to improve the performance of BIPT systems. In a typical BIPT system, the output power is control using the pickup converter phase shift angle (PSA) while the primary converter regulates the input current. This paper proposes an optimized phase shift modulation strategy to minimize the coil losses of a series – series (SS) compensated BIPT system. In addition, a comprehensive study on the impact of power converters on the overall efficiency of the system is also presented. A closed loop controller is proposed to optimize the overall efficiency of the BIPT system. Theoretical results are presented in comparison to both simulations and measurements of a 0.5 kW prototype to show the benefits of the proposed concept. Results convincingly demonstrate the applicability of the proposed system offering high efficiency over a wide range of output power.