951 resultados para Power system stability


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the ever-increasing penetration level of wind power, the impacts of wind power on the power system are becoming more and more significant. Hence, it is necessary to systematically examine its impacts on the small signal stability and transient stability in order to find out countermeasures. As such, a comprehensive study is carried out to compare the dynamic performances of power system respectively with three widely-used power generators. First, the dynamic models are described for three types of wind power generators, i. e. the squirrel cage induction generator (SCIG), doubly fed induction generator (DFIG) and permanent magnet generator (PMG). Then, the impacts of these wind power generators on the small signal stability and transient stability are compared with that of a substituted synchronous generator (SG) in the WSCC three-machine nine-bus system by the eigenvalue analysis and dynamic time-domain simulations. Simulation results show that the impacts of different wind power generators are different under small and large disturbances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project develops the required guidelines to assure stable and accurate operation of Power-Hardware-in-the-Loop implementations. The proposals of this research have been theoretically analyzed and practically examined using a Real-Time Digital Simulator. In this research, the interaction between software simulated power network and the physical power system has been studied. The conditions for different operating regimes have been derived and the corresponding analyses have been presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An algorithm for optimal allocation of reactive power in AC/DC system using FACTs devices, with an objective of improving the voltage profile and also voltage stability of the system has been presented. The technique attempts to utilize fully the reactive power sources in the system to improve the voltage stability and profile as well as meeting the reactive power requirements at the AC-DC terminals to facilitate the smooth operation of DC links. The method involves successive solution of steady-state power flows and optimization of reactive power control variables with Unified Power Flow Controller (UPFC) using linear programming technique. The proposed method has been tested on a real life equivalent 96-bus AC and a two terminal DC system under normal and contingency conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational studies of the transient stability of a synchronous machine connected to an infinite busbar by a double-circuit transmission line are used to illustrate the effect of relative phase-shift insertion between the machine and its associated power system. This method of obtaining a change in the effective rotor-excitation angle, and thereby the power transfer, is described, together with an outline of possible methods of implementation by a phase-shifting transformer in a power system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As power systems grow in their size and interconnections, their complexity increases. Rising costs due to inflation and increased environmental concerns has made transmission, as well as generation systems be operated closer to design limits. Hence power system voltage stability and voltage control are emerging as major problems in the day-to-day operation of stressed power systems. For secure operation and control of power systems under normal and contingency conditions it is essential to provide solutions in real time to the operator in energy control center (ECC). Artificial neural networks (ANN) are emerging as an artificial intelligence tool, which give fast, though approximate, but acceptable solutions in real time as they mostly use the parallel processing technique for computation. The solutions thus obtained can be used as a guide by the operator in ECC for power system control. This paper deals with development of an ANN architecture, which provide solutions for monitoring, and control of voltage stability in the day-to-day operation of power systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents transient stability analysis for a power system with high wind penetration. The transient stability has been evaluated based on two stability criteria: rotor angle stability and voltage stability. A modified IEEE-14 bus system has been used as the main study network and simulations have been conducted at several wind power penetration levels, defined as a fraction of total system generation. A wide range of scenarios have been presented based on the wind farm voltage at the point of connection, i.e. low voltage (LV) distribution level and high voltage (HV) transmission level, and the type of wind generator technology, i.e. fixed speed induction generator (FSIG) and doubly-fed induction generator (DFIG).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The small signal stability of interconnected power systems is one of the important aspects that need to be investigated since the oscillations caused by this kind of instability have caused many incidents. With the increasing penetration of wind power in the power system, particularly doubly fed induction generator (DFIG), the impact on the power system small signal stability performance should be fully investigated. Because the DFIG wind turbine integration is through a fast action converter and associated control, it does not inherently participate in the electromechanical small signal oscillation. However, it influences the small signal stability by impacting active power flow paths in the network and replacing synchronous generators that have power system stabilizer (PSS). In this paper, the IEEE 39 bus test system has been used in the analysis. Furthermore, four study cases and several operation scenarios have been conducted and analysed. The selective eigenvalue Arnoldi/lanczos's method is used to obtain the system eigenvalue in the range of frequency from 0.2 Hz to 2 Hz which is related to electromechanical oscillations. Results show that the integration of DFIG wind turbines in a system during several study cases and operation scenarios give different influence on small signal stability performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Power system stabilizers (PSSs) are extensively used to ensure the dynamic stability of power systems through the modulation of excitation signals supplied to synchronous generators. This paper presents a comparative study of two different PSSs: STAB1 and IEEEST. The stabilizers are designed for the linearized model of a single machine infinite bus (SMIB) system with different loads. Both time-and frequency-domain simulations are carried out to investigate the performance of these stabilizers. For all PSSs, the time-domain simulations are performed by applying a three-phase short-circuit fault at the terminal of the synchronous generator. These simulation results are compared against the open-loop characteristics of the SMIB system where no PSS is implemented. Simulation results demonstrate that the speed-fed PSS provides more damping as compared to frequency- and power-fed stabilizers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this paper is to provide performance metrics for small-signal stability assessment of a given system architecture. The stability margins are stated utilizing a concept of maximum peak criteria (MPC) derived from the behavior of an impedance-based sensitivity function. For each minor-loop gain defined at every system interface, a single number to state the robustness of stability is provided based on the computed maximum value of the corresponding sensitivity function. In order to compare various power-architecture solutions in terms of stability, a parameter providing an overall measure of the whole system stability is required. The selected figure of merit is geometric average of each maximum peak value within the system. It provides a meaningful metrics for system comparisons: the best system in terms of robust stability is the one that minimizes this index. In addition, the largest peak value within the system interfaces is given thus detecting the weakest point of the system in terms of robustness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optimization of power architectures is a complex problem due to the plethora of different ways to connect various system components. This issue has been addressed by developing a methodology to design and optimize power architectures in terms of the most fundamental system features: size, cost and efficiency. The process assumes various simplifications regarding the utilized DC/DC converter models in order to prevent the simulation time to become excessive and, therefore, stability is not considered. The objective of this paper is to present a simplified method to analyze small-signal stability of a system in order to integrate it into the optimization methodology. A black-box modeling approach, applicable to commercial converters with unknown topology and components, is based on frequency response measurements enabling the system small-signal stability assessment. The applicability of passivity-based stability criterion is assessed. The stability margins are stated utilizing a concept of maximum peak criteria derived from the behavior of the impedance-based sensitivity function that provides a single number to state the robustness of the stability of a well-defined minor-loop gain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this paper is to present a simplified method to analyze small-signal stability of a power system and provide performance metrics for stability assessment of a given power-system-architecture. The stability margins are stated utilizing a concept of maximum peak criteria (MPC), derived from the behavior of an impedance-based sensitivity function that provides a single number to state the robustness of the stability of a well-defined minor-loop gain. For each minor-loop gain, defined at every system interface, the robustness of the stability is provided as a maximum value of the corresponding sensitivity function. Typically power systems comprise of various interfaces and, therefore, in order to compare different architecture solutions in terms of stability, a single number providing an overall measure of the whole system stability is required. The selected figure of merit is geometric average of each maximum peak value within the system, combined with the worst case value of system interfaces.