980 resultados para Postnatal-growth
Resumo:
It has been 75 years since Evans and Long identified a somatic growth-promoting substance in pituitary extracts, yet it is only in the last 20 years that the molecular basis for this action has been established. Three key elements in this elucidation were the cloning of the GH receptor, the identification of Janus kinase (JAK) 2 as the receptor-associated tyrosine kinase, and the delineation of signal transduction and activators of transcription (STAT) 5a/b as the key transcription factor(s) activated by JAK2. The interaction between these three elements results in enhanced postnatal growth and is the subject of this review. We describe a new model for GH receptor activation based on subunit rotation within a constitutive dimer, together with the phenotype and hepatic transcript profile of mice with targeted knockins to the receptor cytoplasmic domain. These support a central role for STAT5a/b in postnatal growth.
Mouse embryo culture induces changes in postnatal phenotype including raised systolic blood pressure
Resumo:
A key factor in the use of assisted reproductive technologies (ART) for diverse species is the safety of procedures for long-term health. By using a mouse model, we have investigated the effect of in vitro culture and embryo transfer (ET) of superovulated embryos on postnatal growth and physiological activity compared with that of embryos developing in vivo. Embryo culture from two-cell to blastocyst stages in T6 medium either with or without a protein source reduced blastocyst trophectoderm and inner cell mass cell number compared with that of embryos developing in vivo. Embryo culture and ET had minimal effects on postnatal growth when compared with in vivo development with an equivalent litter size. However, embryo culture, and to a lesser extent ET, led to an enhanced systolic blood pressure at 21 weeks compared with in vivo development independent of litter size, maternal origin, or body weight. Moreover, activity of enzymatic regulators of cardiovascular and metabolic physiology, namely, serum angiotensin-converting enzyme and the gluconeogenesis controller, hepatic phosphoeno/pyruvate carboxykinase, were significantly elevated in response to embryo culture and/or ET in female offspring at 27 weeks, independent of maternal factors and postnatal growth. These animal data indicate that postnatal physiological criteria important in cardiovascular and metabolic health may be more sensitive to routine ART procedures than growth. © 2007 by The National Academy of Sciences of the USA.
Resumo:
The Ped (preimplantation embryo development) gene, whose product is Qa-2 protein, is correlated with a faster rate of preimplantation development (Ped fast phenotype) in mice that express Qa-2 protein compared with mice with an absence of Qa-2 protein (Ped slow phenotype). In the current study, we have used two congenic mouse strains differentially expressing the Ped gene, strain B6.K1 (Ped slow; Qa-2 negative) and strain B6.K2 (Ped fast; Qa-2 positive), to investigate the effects of Ped gene expression on postnatal growth profiles, systolic blood pressure and adult organ allometry. At birth, B6.K1 mice were moderately lighter than B6.K2 mice. B6.K1 mice became heavier during postnatal life (P
Resumo:
Purpose. To examine the postnatal development of major histocompatibility complex (MHC) class II-positive dendritic cells (DC) in the iris of the normal rat eye. Methods. Single-and double-color immunomorphologic studies were performed on whole mounts prepared from rat iris taken at selected postnatal ages (2 to 3 days to 78 weeks). Immunopositive cells were enumerated, using a quantitative light microscope, and MHC class II expression on individual cells was assessed by microdensitometric analysis. Results. Major histocompatibility class II-positive DCs in the iris developed in an age-dependent manner and reached adult-equivalent density and structure at approximately 10 weeks of age, considerably later than previously described in other DC populations in the rat. In contrast, the anti-rat DC monoclonal antibody OX62 revealed a population of cells present at adult-equivalent levels as early as 3 weeks after birth. Dual-color immunostaining and microdensitometric analysis demonstrated that during postnatal growth, development of the network of MHC class II-positive DCs was a consequence of the progressive increase in expression of MHC class II antigen by OX62-positive cells. Conclusions. During postnatal growth, the DC population of the iris develops initially as an OX62-positive-MHC class II-negative population, which then develops increasing MHC class II expression in situ and finally resembles classic DC populations in other tissue sites. Maturation of the iris DC population is temporally delayed compared with time to maturation in other tissue sites in the rat.
Resumo:
Silver-Russell syndrome (SRS) is characterized by severe intrauterine and postnatal growth retardation in association with a typical small triangular face and other variable features. Genetic and epigenetic disturbances are detected in about 50% of the patients. Most frequently, SRS is caused by altered gene expression on chromosome 11p15 due to hypomethylation of the telomeric imprinting center (ICR1) that is present in at least 40% of the patients. Maternally inherited duplications encompassing ICR1 and ICR2 domains at 11p15 were found in a few patients, and a microduplication restricted to ICR2 was described in a single SRS child. We report on a microduplication of the ICR2 domain encompassing the KCNQ1, KCNQ1OT1, and CDKN1C genes in a three-generation family: there were four instances of paternal transmissions of the microduplication from a single male uniformly resulting in normal offspring, and five maternal transmissions, via two clinically normal sisters, with all the children exhibiting SRS. This report provides confirmatory evidence that a microduplication restricted to the ICR2 domain results in SRS when maternally transmitted. (C) 2011 Wiley-Liss, Inc.
Resumo:
Background: Birth weight is positively associated with adult bone mass. However, it is not clear if its effect is already evident in early adulthood. Objective: To investigate the association between birth weight, adult body size, the interaction between them and bone mass in young adults. Methods: Bone densitometry by DXA was performed on 496 individuals (240 men) aged 23-24 years from the 1978/79 Ribeirao Preto (southern Brazil) birth cohort, who were born and still residing in the city in 2002. Birth weight and length as well as adult weight and height were directly measured and converted to z-scores. The influence of birth weight and length, and adult weight and height on bone area (BA), bone mineral content (BMC) and bone mineral density (BMD) at the lumbar spine, proximal femur and femoral neck were investigated through simple and multiple linear regression models. Adjustments were made for sex, skin color, gestational age, physical activity level, smoking status and dietary consumption of protein, calcium and alcohol. Interaction terms between birth weight and adult weight, and birth length and adult height were tested. Results: Men in the highest fertile of birth weight distribution had greater BA and BMC at all three bone sites when compared with their counterparts in the lowest tertiles (p<0.008). For BMD, this trend was observed only in the lumbar spine. Adult weight and height were positively associated with BA and BMC at all three bone sites (p<0.05). For BMD, these associations were seen for adult weight, but for adult height an association was observed only in the lumbar spine. Birth weight retained positive associations with proximal femur BA and BMC after adjustments for current weight and height. No interaction was observed between variables measuring prenatal growth and adult body size. Conclusion: Birth weight and postnatal growth are independent determinants of adult bone mass in a sample of Brazilian adults. This effect is already evident in early adulthood. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Objective: To assess whether the -11391G > A polymorphism in the regulatory region of the adiponectin gene (ADIPOQ) is associated with birth size, postnatal growth, adiponectinemia, and cardiometabolic risk in adult life. Design: Case-control study nested within a prospective cohort of 2063 community subjects born in 1978/1979 and followed since birth to date. Methods: ADIPOQ -11391G > A genotype-phenotype associations were evaluated in 116 subjects born large for gestational age (LGA) and 392 gender-matched controls at birth (birth size), at 8-10 years (catch-down growth), and at 23-25 years of age (cardiometabolic profile). Results: The -11391A variant allele frequency was higher in LGA subjects (P=0.04). AA genotype was associated with augmented probability of being born LGA (odds ratio=4.14; 95% confidence interval: 1.16-16.7; P=0.03). This polymorphism was associated neither with body composition nor with postnatal growth pattern. At the age of 23-25 years, the -11391A variant allele was associated with higher serum adiponectin levels (GG: 10.7 +/- 6.2 versus GA: 12.2 +/- 6.5 versus AA: 14.2 +/- 6.8 mu g/ml; P < 0.01). Subjects born LGA presented higher body mass index (BMI; P=0.01), abdominal circumference (P=0.04), blood pressure (P=0.04), and homeostasis assessment model for insulin resistance (P=0.01) than adequate for gestational age. Symmetry at birth did not influence these variables. The occurrence of catch-down of weight was associated with lower BMI and abdominal circumference (P < 0.001) at 23-25 years. Conclusions: The -11391A ADIPOQ gene variant was associated with increased chance of being born LGA and with higher adiponectin levels in early adult life.
Resumo:
In order to assess the validity of the weight per square of length ratio as an index of adiposity during the neonatal period, 37 premature infants (gestational age, mean +/- SD, = 31.5 +/- 1.1 weeks, birthweight, mean +/- SD, = 1.448 +/- 147 g) were studied for weight, length and skinfold thickness at 5 sites (biceps, triceps, subscapular, suprailiac and quadriceps) during their stay in the Neonatal Unit of the University Hospital in Lausanne. The results show a significant correlation between the adiposity index and the sum of 5 skinfold thickness sites in premature infants. The adiposity index gives a fair estimate of the body fat mass during the postnatal growth in premature infants.
Resumo:
During the last decade, the development of "bedside" investigative methods, including indirect calorimetry, nutritional balance and stable isotope techniques, have given a new insight into energy and protein metabolism in the neonates. Neonates and premature infants especially, create an unusual opportunity to study the metabolic adaptation to extrauterine life because their physical environment can be controlled, their energy intake and energy expenditure can be measured and the link between their protein metabolism and the energetics of their postnatal growth can be assessed with accuracy. Thus, relatively abstract physiological concepts such as the postnatal timecourse of heat production, energy cost of growth, energy cost of physical activity, thermogenic effect of feeding, efficiency of protein gain, metabolic cost of protein gain and protein turnover have been quantified. These results show that energy expenditure and heat production rates increase postnatally from average values of 40 kcal/kgxday during the first week to 60 kcal/kgxday in the third week. This increase parellels nutritional intakes as well as the rate of weight gain. The thermogenic effect of feeding and the physical activity are relatively low and account only for an average of 5% each of the total heat production. The cost of protein turnover is the highest energy demanding process. The fact that nitrogen balance becomes positive within 72 hours after birth places the newborn in a transitional situation of dissociated balance between energy and protein metabolism: dry body mass and fat decrease while there is a gain in protein and increase in supine length. This particular situation ends during the second postnatal week and soon thereafter the rate of weight gain matches the statural growth. The goals of the following review are to summarize recent data on the physiological aspects of energy and protein metabolism directly related to the extrauterine adaptation, to describe experimental approaches which recently were adapted to the newborns in order to get "bedside results" and to discuss how far these results can help everyday's neonatal practice.
Resumo:
INTRODUCTION: The presence of a pre-existing narrow spinal canal may have an important place in the ethiopathogenesis of lumbar spinal stenosis. By consequence the study of the development of the spinal canal is crucial. The first goal of this work is to do a comprehensive literature search and to give an essential view on the development of spinal canal and its depending factors studied until now. The second goal is to give some considerations and hypothesize new leads for clinically useful researches. MATERIALS AND METHODS: A bibliographical research was executed using different search engines: PubMed, Google Schoolar ©, Ovid ® and Web Of Science ©. Free sources and avaible from the University of Lausanne (UNIL) and Centre Hospitalier Universitaire Vaudois (CHUV) were used. At the end of the bibliographic researches 114 references were found, 85 were free access and just 41 were cited in this work. Most of the found references are in English or in French. RESULTS AND DISCUSSION: The spinal canal is principally limited by the vertebrae which have a mesodermal origin. The nervous (ectodermal) tissue significantly influences the growth of the canal. The most important structure participating in the spinal canal growth is the neurocentral synchondrosis in almost the entire vertebral column. The fusion of the half posterior arches seems to have less importance for the canal size. The growth is not homogeneous but, depends on the vertebral level. Timing, rate and growth potentials differ by regions. Especially in the case of the lumbar segment, there is a craniocaudal tendency which entails a greater post-natal catch-up growth for distal vertebrae. Trefoil-shape of the L5 canal is the consequence of a sagittal growth deficiency. The spinal canal shares some developmental characteristics with different structures and systems, especially with the central nervous system. It may be the consequence of the embryological origin. It is supposed that not all the related structures would be affected by a growth impairment because of the different catch-up potentials. Studies found that narrower spinal canals might be related with cardiovascular and gastrointestinal symptoms, lower thymic function, bone mineral content, dental hypoplasia and Harris' lines. Anthropometric correlations found at birth disappear during the pediatric age. All factors which can affect bone and nervous growth might be relevant. Genetic predispositions are the only factors that can never be changed but the real impact is to ascertain. During the antenatal period, all the elements determining a good supply of blood and oxygen may influence the vertebral canal development, for example smoking during pregnancy. Diet is a crucial factor having an impact on both antenatal and postnatal growth. Proteins intake is the only proved dietetic relationship found in the bibliographic research of this work. The mechanical effects due to locomotion changes are unknown. Socioeconomic situation has an impact on several influencing factors and it is difficult to study it owing to numerous bias. CONCLUSIONS: A correct growth of spinal canal is evidently relevant to prevent not-degenerative stenotic conditions. But a "congenital" narrower canal may aggravate degenerative stenosis. This concerns specific groups of patient. If the size of the canal is highly involved in the pathogenesis of common back pains, a hypothetical measure to prevent developmental impairments could have a not- negligible impact on the society. It would be interesting to study more about dietetic necessities for a good spinal canal development. Understanding the relationship between nervous tissues and vertebra it might be useful in identifying what is needed for the ideal development. Genetic importance and the post-natal influences of upright standing on the canal growth remain unsolved questions. All these tracks may have a double purpose: knowing if it is possible to decrease the incidence of narrower spinal canal and consequently finding possible preventive measures. The development of vertebral canal is a complex subject which ranges over a wide variety of fields. The knowledge of this subject is an indispensable tool to understand and hypothesize the influencing factors that might lead to stenotic conditions. Unfortunately, a lack of information makes difficult to have a complete and satisfactory interdisciplinary vision.
Resumo:
Purpose: Posterior microphthalmos (MCOP)/nanophthalmos (NNO) is a developmental anomaly characterized by extreme hyperopia due to short axial length. The population of the Faroe Islands shows a high prevalence of an autosomal recessive form (arMCOP). The gene mutated in arMCOP is not yet known.Methods: Genetic mapping by linkage analysis using microsatellite and single nucleotide polymorphisms, mutation analysis by PCR and sequencing, molecular modellingResults: Having refined the position of the disease locus (MCOP6) in an interval of 250 kb in chromosome 2q37.1 in Faroese families, we detected 3 mutations in a novel gene, LOC646960: Patients of 10 different Faroese families were either homozygous (n=22) for c.926G>C (p.Trp309Ser) or compound heterozygous (n=6) for c.926G>C and c.526C>G (p.Arg176Gly), whereas a homozygous 1 bp duplication (c.1066dupC) was identified in patients with arNNO from a Tunisian family. In two unrelated patients with MCOP, no LOC646960 mutation was found. LOC646960 is expressed in the human adult retina and RPE. The expression of the mouse homologue in the eye can be first detected at E17 and is highest in adults. The predicted protein is a 603 amino acid long secreted trypsin-like serine peptidase. c.1066dupC should result in a functional null allele. Molecular modelling of the p.Trp309Ser mutant suggests that both affinity and reactivity of the enzyme towards in vivo substrates are substantially reduced.Conclusions: Postnatal growth of the eye is important for proper development of the refractive components (emmetropization), and is mainly due to elongation of the posterior segment from 10-11 mm at birth to 15-16 mm at the age of 13 years. Optical defocus leads to changes in axial length by moving the retina towards the image plane. arMCOP may theoretically be explained, in line with the expression pattern of LOC646960, by a postnatal growth retardation of the posterior segment.
Resumo:
Background: Kabuki syndrome (KS) is a multiple congenital anomaly syndrome characterized by specific facial features, mild to moderate mental retardation, postnatal growth delay, skeletal abnormalities, and unusual dermatoglyphic patterns with prominent fingertip pads. A 3.5 Mb duplication at 8p23.1-p22 was once reported as a specific alteration in KS but has not been confirmed in other patients. The molecular basis of KS remains unknown. Methods: We have studied 16 Spanish patients with a clinical diagnosis of KS or KS-like to search for genomic imbalances using genome-wide array technologies. All putative rearrangements were confirmed by FISH, microsatellite markers and/or MLPA assays, which also determined whether the imbalance was de novo or inherited. Results: No duplication at 8p23.1-p22 was observed in our patients. We detected complex rearrangements involving 2q in two patients with Kabuki-like features: 1) a de novo inverted duplication of 11 Mb with a 4.5 Mb terminal deletion, and 2) a de novo 7.2 Mb-terminal deletion in a patient with an additional de novo 0.5 Mb interstitial deletion in 16p. Additional copy number variations (CNV), either inherited or reported in normal controls, were identified and interpreted as polymorphic variants. No specific CNV was significantly increased in the KS group. Conclusion: Our results further confirmed that genomic duplications of 8p23 region are not a common cause of KS and failed to detect other recurrent rearrangement causing this disorder. The detection of two patients with 2q37 deletions suggests that there is a phenotypic overlap between the two conditions, and screening this region in the Kabuki-like patients should be considered.
Resumo:
BACKGROUND: Cytoskeletal changes after longterm exposure to ethanol have been described in a number of cell types in adult rat and humans. These changes can play a key part in the impairment of nutrient assimilation and postnatal growth retardation after prenatal damage of the intestinal epithelium produced by ethanol intake. AIMS: To determine, in the newborn rat, which cytoskeletal proteins are affected by longterm ethanol exposure in utero and to what extent. ANIMALS: The offspring of two experimental groups of female Wistar rats: ethanol treated group receiving up to 25% (w/v) of ethanol in the drinking fluid and control group receiving water as drinking fluid. METHODS: Single and double electron microscopy immunolocalisation and label density estimation of cytoskeletal proteins on sections of proximal small intestine incubated with monoclonal antibodies against actin, alpha-tubulin, cytokeratin (polypeptides 1, 5, 6, 7, 8, 10, 11, and 18), and with a polyclonal antibody anti-beta 1,4-galactosyl transferase as trans golgi (TG) or trans golgi network (TGN) marker, or both. SDS-PAGE technique was also performed on cytoskeletal enriched fractions from small intestine. Western blotting analysis was carried out by incubation with the same antibodies used for immunolocalisation. RESULTS: Intestinal epithelium of newborn rats from the ethanol treated group showed an overexpression of cytoskeletal polypeptides ranging from 39 to 54 kDa, affecting actin and some cytokeratins, but not tubulin. Furthermore, a cytokeratin related polypeptide of 28-29 kDa was identified together with an increase in free ubiquitin in the same group. It was noteworthy that actin and cytokeratin were abnormally located in the TG or the TGN, or both. CONCLUSIONS: Longterm exposure to ethanol in utero causes severe dysfunction in the cytoskeleton of the developing intestinal epithelium. Actin and cytokeratins, which are involved in cytoskeleton anchoring to plasma membrane and cell adhesion, are particularly affected, showing overexpression, impaired proteolysis, and mislocalisation.
Resumo:
BACKGROUND: Cytoskeletal changes after longterm exposure to ethanol have been described in a number of cell types in adult rat and humans. These changes can play a key part in the impairment of nutrient assimilation and postnatal growth retardation after prenatal damage of the intestinal epithelium produced by ethanol intake. AIMS: To determine, in the newborn rat, which cytoskeletal proteins are affected by longterm ethanol exposure in utero and to what extent. ANIMALS: The offspring of two experimental groups of female Wistar rats: ethanol treated group receiving up to 25% (w/v) of ethanol in the drinking fluid and control group receiving water as drinking fluid. METHODS: Single and double electron microscopy immunolocalisation and label density estimation of cytoskeletal proteins on sections of proximal small intestine incubated with monoclonal antibodies against actin, alpha-tubulin, cytokeratin (polypeptides 1, 5, 6, 7, 8, 10, 11, and 18), and with a polyclonal antibody anti-beta 1,4-galactosyl transferase as trans golgi (TG) or trans golgi network (TGN) marker, or both. SDS-PAGE technique was also performed on cytoskeletal enriched fractions from small intestine. Western blotting analysis was carried out by incubation with the same antibodies used for immunolocalisation. RESULTS: Intestinal epithelium of newborn rats from the ethanol treated group showed an overexpression of cytoskeletal polypeptides ranging from 39 to 54 kDa, affecting actin and some cytokeratins, but not tubulin. Furthermore, a cytokeratin related polypeptide of 28-29 kDa was identified together with an increase in free ubiquitin in the same group. It was noteworthy that actin and cytokeratin were abnormally located in the TG or the TGN, or both. CONCLUSIONS: Longterm exposure to ethanol in utero causes severe dysfunction in the cytoskeleton of the developing intestinal epithelium. Actin and cytokeratins, which are involved in cytoskeleton anchoring to plasma membrane and cell adhesion, are particularly affected, showing overexpression, impaired proteolysis, and mislocalisation.
Resumo:
Axial spondylometaphyseal dysplasia (SMD) (OMIM 602271) is an uncommon skeletal dysplasia characterized by metaphyseal changes of truncal-juxtatruncal bones, including the proximal femora, and retinal abnormalities. The disorder has not attracted much attention since initially reported; however, it has been included in the nosology of genetic skeletal disorders [Warman et al. (2011); Am J Med Genet Part A 155A:943-968] in part because of a recent publication of two additional cases [Isidor et al. (2010); Am J Med Genet Part A 152A:1550-1554]. We report here on the clinical and radiological manifestations in seven affected individuals from five families (three sporadic cases and two familial cases). Based on our observations and Isidor's report, the clinical and radiological hallmarks of axial SMD can be defined: The main clinical findings are postnatal growth failure, rhizomelic short stature in early childhood evolving into short trunk in late childhood, and thoracic hypoplasia that may cause mild to moderate respiratory problems in the neonatal period and later susceptibility to airway infection. Impaired visual acuity comes to medical attention in early life and function rapidly deteriorates. Retinal changes are diagnosed as retinitis pigmentosa or pigmentary retinal degeneration on fundoscopic examination and cone-rod dystrophy on electroretinogram. The radiological hallmarks include short ribs with flared, cupped anterior ends, mild spondylar dysplasia, lacy iliac crests, and metaphyseal irregularities essentially confined to the proximal femora. Equally affected sibling pairs of opposite gender and parental consanguinity are strongly suggestive of autosomal recessive inheritance. © 2011 Wiley-Liss, Inc.