35 resultados para Porosus


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effectiveness of behavioural thermoregulation in reptiles is amplified by cardiovascular responses, particularly by differential rates of heart beat in response to heating and cooling (heart-rate hysteresis). Heart-rate hysteresis is ecologically important in most lineages of ectothermic reptile' and we demonstrate that heart-rate hysteresis in the lizard Pogona vitticeps is mediated by prostaglandins. In a control treatment (administration of saline), heart rates during heating were significantly faster than during cooling at any given body temperature. When cyclooxygenase 1 and 2 enzymes were inhibited, heart rates during heating were not significantly different from those during cooling. Administration of agonists showed that thromboxane B-2 did not have a significant effect on heart rate, but prostacyclin and prostaglandin F-2alpha caused a significant increase (3.5 and 13.6 beats min(-1), respectively) in heart rate compared with control treatments. We speculate that heart-rate hysteresis evolved as a thermoregulatory mechanism that may ultimately be controlled by neurally induced stimulation of nitric oxide production, or maybe via photolytically induced production of vitamin D.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Physiological, anatomical, and developmental features of the crocodilian heart support the paleontological evidence that the ancestors of living crocodilians were active and endothermic, but the lineage reverted to ectothermy when it invaded the aquatic, ambush predator niche. In endotherms, there is a functional nexus between high metabolic rates, high blood flow rates, and complete separation of high systemic blood pressure from low pulmonary blood pressure in a four-chambered heart. Ectotherms generally lack all of these characteristics, but crocodilians retain a four-chambered heart. However, crocodilians have a neurally controlled, pulmonary bypass shunt that is functional in diving. Shunting occurs outside of the heart and involves the left aortic arch that originates from the right ventricle, the foramen of Panizza between the left and right aortic arches, and the cog-tooth valve at the base of the pulmonary artery. Developmental studies show that all of these uniquely crocodilian features are secondarily derived, indicating a shift from the complete separation of blood flow of endotherms to the controlled shunting of ectotherms. We present other evidence for endothermy in stem archosaurs and suggest that some dinosaurs may have inherited the trait.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The differences in physical properties of air and water pose unique behavioural and physiological demands on semiaquatic animals. The aim of this study was to describe the diving behaviour of the freshwater crocodile Crocodylus johnstoni in the wild and to assess the relationships between diving, body temperature, and heart rate. Time-depth recorders, temperature-sensitive radio transmitters, and heart rate transmitters were deployed on each of six C. johnstoni (4.0-26.5 kg), and data were obtained from five animals. Crocodiles showed the greatest diving activity in the morning (0600-1200 hours) and were least active at night, remaining at the water surface. Surprisingly, activity pattern was asynchronous with thermoregulation, and activity was correlated to light rather than to body temperature. Nonetheless, crocodiles thermoregulated and showed a typical heart rate hysteresis pattern (heart rate during heating greater than heart rate during cooling) in response to heating and cooling. Additionally, dive length decreased with increasing body temperature. Maximum diving length was 119.6 min, but the greatest proportion of diving time was spent on relatively short (

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal dependence of biochemical reaction rates means that many animals regulate their body temperature so that fluctuations in body temperature are small compared to environmental temperature fluctuations. Thermoregulation is a complex process that involves sensing of the environment, and subsequent processing of the environmental information. We suggest that the physiological mechanisms that facilitate thermoregulation transcend phylogenetic boundaries. Reptiles are primarily used as model organisms for ecological and evolutionary research and, unlike in mammals, the physiological basis of many aspects in thermoregulation remains obscure. Here, we review recent research on regulation of body temperature, thermoreception, body temperature set-points, and cardiovascular control of heating and cooling in reptiles. The aim of this review is to place physiological thermoregulation of reptiles in a wider phylogenetic context. Future research on reptilian thermoregulation should focus on the pathways that connect peripheral sensing to central processing which will ultimately lead to the thermoregulatory response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite Springer’s (1964) revision of the sharpnose sharks (genus Rhizoprionodon), the taxonomic definition and ranges of Rhizoprionodon in the western Atlantic Ocean remains problematic. In particular, the distinction between Rhizoprionodon terraenovae and R. porosus, and the occurrence of R. terraenovae in South American waters are unresolved issues involving common and ecologically important species in need of fishery management in Caribbean and southwest Atlantic waters. In recent years, molecular markers have been used as efficient tools for the detection of cryptic species and to address controversial taxonomic issues. In this study 415 samples of the genus Rhizoprionodon captured in the western Atlantic Ocean from Florida to southern Brazil were examined for sequences of the COI gene and the D-loop and evaluated for nucleotide differences. The results on nucleotide composition, AMOVA tests, and relationship distances using Bayesian-likelihood method and haplotypes network, corroborates Springer’s (1964) morphometric and meristic finding and provide strong evidence that supports consideration of R. terraenovae and R. porosus as distinct species.